Skip to main content
Log in

Felbamate in Epilepsy Therapy

Evaluating the Risks

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Felbamate demonstrates a unique therapeutic profile and often results in seizure control when other agents fail. Its use has been associated with risks for aplastic anaemia and hepatic failure. A number of confounding factors makes the actual incidence rate for each adverse effect difficult to determine. However, certain risk factors are common in reported cases. In order to minimise the risk, at the present time, it is necessary to rely on the clinical profile of the patients reporting these adverse effects.

The patient reporting aplastic anaemia is usually female, Caucasian, and an adult. The dose did not appear to be a factor and the time to onset of aplastic anaemia was less than 1 year for all patients. Concomitant medications and diseases may play an important role. Patients with reported aplastic anaemia generally had a history of a serious allergy or toxicity to other anticonvulsants and/or a background of having had a cytopenia due to other anticonvulsants, and a diagnosis or serological evidence of concomitant immune disorder.

The demographics associated with hepatic failure are less well defined. Patients were also predominantly female, were equally divided among adult and paediatric patients, and had a broad range of time to presentation of hepatotoxicity following felbamate therapy. Concomitant medications again play an important role with, in this case, valproic acid (sodium valproate), phenytoin and carbamazepine being the most frequent. In 50% of the population, hepatic failure was not felt to be due to felbamate but associated with confounding factors including status epilepticus, paracetamol (acetaminophen) toxicity, hepatitis and shock liver.

Initial research has failed to provide a diagnostic indicator. However, work on a potential intermediate felbamate metabolite has suggested the formation of a reactive aldehyde whose end products have been detected in the urine of felbamate treated patients. Until these data are confirmed, the medical history, clinical picture, and laboratory testing, should be used to identify patients at risk.

The risks for toxicity with felbamate should be evaluated before starting treatment. In addition, liver function tests and complete blood count (CBC) prior to therapy and at clinically rational intervals should be conducted. Patients must be educated in the likely prodromal symptoms of potential marrow/liver toxicity.

Felbamate is too valuable an anticonvulsant to be relegated to the therapeutic scrap heap. With monitoring, patient education, and continued research to further elucidate risk factors, felbamate can be a viable therapeutic agent for patients with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourgeois B, Leppik IE, Sackellares JC, et al. Felbamate: a double-blind efficacy trial following presurgical monitoring. Epilepsia 1991; 32: 18

    Google Scholar 

  2. Bourgeois B, Leppik IE, Sackellares JC, et al. Felbamate: a double blind, controlled trial in patients undergoing presurgical evaluation of partial seizures. Neurology 1993; 43: 693–6

    Article  PubMed  CAS  Google Scholar 

  3. Devinsky O, Faught RE, Wilder BJ, et al. Efficacy of felbamate monotherapy in patients undergoing presurgical evaluation of partial seizures. Epilepsy Res 1995; 20: 241–6

    Article  PubMed  CAS  Google Scholar 

  4. Leppik IE, Dreifuss FE, Pledger GW, et al. Felbamate in partial seizures: results of Phase II clinical trial. Epilepsia 1989; 30: 661–2

    Google Scholar 

  5. Sachdeo RC, Kramer LD, Rosenberg A, et al. Felbamate monotherapy: controlled trial in patients with partial onset seizures. Ann Neurol 1992; 32: 386–93

    Article  PubMed  CAS  Google Scholar 

  6. Sachdeo RC, Kramer LD, Rosenberg A. Felbamate double-blind monotherapy trial. Ann Neurol 1991; 30: 290

    Google Scholar 

  7. Ritter FJ, Leppik IE, Dreifuss FE, et al. Efficacy of felbamate in childhood epileptic encephalopathy (Lennox Gastaut Syndrome). N Engl J Med 1993; 328: 29–33

    Article  Google Scholar 

  8. Leppik IE, Kramer LD, Bourgeois B, et al. Felbamate after withdrawal of other epileptic drugs [abstract]. Neurology 1990; 40: 158

    Article  Google Scholar 

  9. Perhach JL, Weliky I, Newton JJ, et al. Felbamate. In: Meldrum BS, Porter RJ, editors. New anticonvulsant drugs. London-Paris: J Libbey, 1986: 117–23

    Google Scholar 

  10. Pellock JM, Brodie MJ. Felbamate: 1997 update. Epilepsia 1997; 38: 1261–4

    Article  PubMed  CAS  Google Scholar 

  11. DeGiorgio CM, Lopez JE, Lekht ZN, et al. Status epilepticus induced by felbatol withdrawal. Neurology 1995; 45: 1021–2

    Article  PubMed  CAS  Google Scholar 

  12. Lathers CM, Schraeder PL. Experience based teaching of therapeutics and clinical pharmacology of antiepileptic drugs: sudden unexplained death in epilepsy: do antiepileptic drugs have a role? J Clin Pharmacol 1995; 35: 573–87

    PubMed  CAS  Google Scholar 

  13. Annegers JF, Coan SP, Hauser WA, et al. Epilepsy, vagal nerve stimulation by the NCP system, mortality and sudden, unexpected, unexplained death. Epilepsia 1998; 39: 206–12

    Article  PubMed  CAS  Google Scholar 

  14. Kaufman DW, Kelly JP, Anderson T, et al. Evaluation of the case reports of aplastic anemia among patients treated with felbamate. Epilepsia 1997; 38: 1265–9

    Article  PubMed  CAS  Google Scholar 

  15. Loui WS, Kang E, Cascino GD, Inwards DJ. Felbamate associated pancytopenia. Blood 1994: XX: 549

    Google Scholar 

  16. Pennel PB, Ogally MS, Macdonald RL. Aplastic anemia in a patient receiving felbamate for complex partial seizures. Neurology 1995; 45: 456–60

    Article  Google Scholar 

  17. Ney GC, Schaul N, Loughlin J, et al. Thrombocytopenia in association with felbamate use. Neurology 1994; 44: 980–1

    Article  PubMed  CAS  Google Scholar 

  18. O’Neil MG, Perdun CS, Wilson MB, et al. Felbamate-associated fatal acute hepatic necrosis. Neurology 1996; 46: 1457–9

    Article  PubMed  Google Scholar 

  19. Watanable M, Iwashashi K, Kugoh T, et al. The relationship between phenytoin pharmacokinetics and CYP2C19 in Japanese epileptic patients. Clin Neuropharmacol 1998; 21: 122–6

    Google Scholar 

  20. Chien JY, Peter RM, Nolan CM, et al. Influence of polytmorphic N-acetyltransferase phenotype on the inhibition and induction of acetaminophen bioactivation with long-term isoniazid. Clin Pharmacol Ther 1997; 61: 24–34

    Article  PubMed  CAS  Google Scholar 

  21. Kucharczyk N. Felbamate: chemistry and biotransformation. In: Levy RH, Mattson RH, Eldrum BS, editors. Antiepileptic drugs. New York: Raven Press Ltd, 1995; 799–806

    Google Scholar 

  22. Shumaker RC, Fantel C, Kelian E, et al. Evaluation of the elimination of [14C]-felbamate in healthy men. Epilepsia 1990; 21: 642

    Google Scholar 

  23. Kapetanovic IM, Torchin CD, Thompson CD, et al. A potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab Dispos 1998; 26(11): 1089–95

    PubMed  CAS  Google Scholar 

  24. Sachdeo RC, Narang-Sachdeo SK, Shumaker RC, et al. Tolerability and pharmacokinetics of monotherapy felbamate doses of 1200–6000 mg/day in subjects with epilepsy. Epilepsia 1997; 38: 887–92

    Article  PubMed  CAS  Google Scholar 

  25. Sachdeo RC, Sachdeo S, Howard J, et al. Steady-state pharmacokinetics and dose proportionality of felbamate following oral administration of 1200, 2400 and 3600 mg/day felbamate [abstract]. Epilepsia 1993; 34: 80

    Google Scholar 

  26. Banfield CR, Zhu G-RR, Jen F, et al. The effect of age on apparent clearance of felbamate: a retrospective analysis using nonlinear mixed-effects modeling. Ther Drug Monit 1996; 18: 19–29

    Article  PubMed  CAS  Google Scholar 

  27. Yang JT, Morris M, Wong KK, et al. Felbamate metabolism in paediatric and adult beagle dogs. Drug Metab Dispos 1992; 20: 84–8

    PubMed  CAS  Google Scholar 

  28. Data on file, Wallace Laboratories, 1999

  29. Vincent PC. Drug-induced aplastic anemia and agranulocytosis: incidence and mechanisms. Drugs 1986; 31: 52–63

    Article  PubMed  CAS  Google Scholar 

  30. Thompson CD, Kinter MT, Macdonald TL. Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylprionaldehyde and 2-phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 1996; 9: 1225–9

    Article  PubMed  CAS  Google Scholar 

  31. Thompson CD, Gulden PH, Macdonald TL. Identification of modified atropaldehyde mercapturic acids in rat and human urine after felbamate administration. Chem Res Toxicol 1997; 10: 457–62

    Article  PubMed  CAS  Google Scholar 

  32. Glue P, Banfield CR, Perhach JL, et al. Pharmacokinetic interactions with felbamate: in vitro-in vivo correlation. Clin Pharmacokinet 1997; 33: 214–24

    Article  PubMed  CAS  Google Scholar 

  33. Levy, RH. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia 1995; 36: S8–S13

    Article  PubMed  Google Scholar 

  34. Troupin AS, Montouris G, Hussein G. Felbamate: therapeutic range and other kinetic information. J Epilepsy 1997; 10: 26–31

    Article  Google Scholar 

  35. Harden CL, Trifiletti R, Kutt H. Felbamate levels in patients with epilepsy. Epilepsia 1996; 37: 280–3

    Article  PubMed  CAS  Google Scholar 

  36. Racha JK, Mather GG, Bishop FE, et al. Involvement of CYP3A4 and CYP2E1 in the metabolism of felbamate in human liver microsomes. ISSX Proc 1996; 10: 370

    Google Scholar 

  37. Sachdeo RC, Narang-Sachdeo SK, Montgomery PA, et al. Evaluation of the potential interaction between felbamate and erythromycin in patients with epilepsy. Clin Pharm Ther 1998; 38: 184–90

    CAS  Google Scholar 

  38. Banfield C, Saano V, Glue P, et al. Effects of felbamate on oral contraceptive pharmacokinetics. Clin Pharm Ther 1995; 57: 207–12

    Google Scholar 

  39. Albani F, Theodore WH, Washington P, et al. Effect of felbamate on plasma levels of carbamazepine and its metabolites. Epilepsia 1991; 32: 130–2

    Article  PubMed  CAS  Google Scholar 

  40. Holmes GB, Graves NM, Leppik IE, et al. Felbamate: bidrectional effects on phenytoin and carbamazepine serum concentrations. Epilepsia 1987; 28: 578–9

    Article  Google Scholar 

  41. Fuerst RH, Graves NM, Leppik IE, et al. Felbamate increase phenytoin but decreases carbamazepine concentrations. Epilepsia 1988; 29: 488–91

    Article  PubMed  CAS  Google Scholar 

  42. Graves NM, Holmes GB, Fuerst RH, et al. Effect of felbamate on phenytoin and carbamazepine serum concentrations. Epilepsia 1989; 30: 225–9

    Article  PubMed  CAS  Google Scholar 

  43. Wagner ML, Graves NM, Marienau K, et al. Discontinuation of phenytoin and carbamazepine in patients receiving felbamate. Epilepsia 1991; 32: 398–406

    Article  PubMed  CAS  Google Scholar 

  44. Reidenberg P, Glue P, Banfield CR, et al. Effects of felbamate on pharmacokinetics of phenobarbital. Clin Pharmacol Ther 1995; 58: 279–87

    Article  PubMed  CAS  Google Scholar 

  45. Kelly JP, Jurgelon JM, Issargrisil S, et al. An epidemiological study of aplastic anaemia: relationship of drug exposures to clinical features and outcome. Eur JHematol 1996; 37: 47–52

    Google Scholar 

  46. Gerson WT, Fine DG, Spielberg S, et al. Anticonvulsant-induced aplastic anemia: increased susceptibility to toxic drug metabolites in vitro. Blood 1983; 61: 889–93

    PubMed  CAS  Google Scholar 

  47. Pellock JM. Rational use of valproate in adults and children. In: Levy RH, Penry JK, editors. Idiosyncratic reactions to valproate: clinical risk patterns and mechanisms of toxicity. New York: Raven Press Ltd., 1991: 155–61

    Google Scholar 

  48. Pisciotta AV. Hemotologic toxicity of carbamazepine. In: Penry JK, Daily DD, editors. Advances in neurology. Vol. 11. New York: Raven Press, 1975: 355–68

    Google Scholar 

  49. Young NS. Pathophysiology II: immune suppression of haematopoiesis. In: Young NS, Alter BP, editors. Aplastic anemia acquired and inherited. Philadelphia: WB. Saunders, 1994: 68–99

    Google Scholar 

  50. Young NS. Immune pathophysiology of acquired aplastic anemia. Eur J Hematol 1996; 57: 55–9

    Article  Google Scholar 

  51. Yunis AA. Chloramphenicol toxicity In: Gridwood, editor. Blood disorders due to drugs and other agents. New York: Excerpta Medica, 1974: 107–26

    Google Scholar 

  52. De Wolff FA, Vermeij P, Ferrari MD, et al. Impairment of phenytoin parahydroxylation as a cause of severe intoxication. Ther Drug Monit 1983; 5: S213–5

    Article  Google Scholar 

  53. Schattenberg DG, Stillman WS, Gruntmeir JJ, et al. Peroxidase activity in murine and human haematopoietic progenitor cells. Potential relevance to benzene-induced toxicity. Mol Pharmacol 1994; 46: 346–51

    PubMed  CAS  Google Scholar 

  54. Shear NH, Spielberg SP. Anticonvulsant hypersensitivity syndrome: in vitro assessment of risk. J Clin Invest 1988; 182: 1826–32

    Article  Google Scholar 

  55. Nagao T, Mauer AM. Concordance for drug-induced aplastic anemia in identical twins. N Engl J Med 1969; 281: 7–11

    Article  PubMed  CAS  Google Scholar 

  56. Loebstein R, Zahid N, Diev-Citrin O, et al. Deferiprone (L) induced agranulocytosis: a possible mechanism. Clin Pharmacol Ther 1997; 61: 139

    Google Scholar 

  57. Jimenez JJ, Armura GK, Abou-Khalil WH, et al. Chloramphenicol induced toxic bone marrow injury: possible role of bacterial metabolites of chloramphenicol. Blood 1987; 80: 1180–5

    Google Scholar 

  58. Spielberg SP, Gordon GB, Blake DA, et al. Predisposition to phenytoin hepatotoxicity assessed in vitro. N Engl J Med 1981; 305: 722–7

    Article  PubMed  CAS  Google Scholar 

  59. Pichler WJ, Schnyder B, Zanni, MP, et al. Role of Tcells in drug allergies. Allergy 1998; 53: 225–32

    Article  PubMed  CAS  Google Scholar 

  60. Moore MAS, Castro-Malaspina H. Immunosuppression in aplastic anemia — postponing the inevitable? N Engl J Med 1991; 324: 1358–60

    Article  PubMed  CAS  Google Scholar 

  61. Zimmerman HJ. Lesions of drug-induced liver disease and valproate hepatotoxicity. In: Levy RH, Penry JK, editors. Idiosyncratic reactions to valproate: clinical risk patterns and mechanisms of toxicity. New York: Raven Press, Ltd., 1991: 31–45

    Google Scholar 

  62. Griem P, Wulferink M, Sachs B, et al. Allergic and autoimmune reactions to xenobiotics: how do they arise? J Immunol 1998; 19: 133–41

    CAS  Google Scholar 

  63. Pohl LR, Pumford NR, Martin JL. Mechanisms, chemical structures and drug metabolism. Eur J Hematol 1996; 57: 98–104

    Article  Google Scholar 

  64. Dreifuss FE, Langer DH, Moline KA, et al. Valproic acid hepatic fatalities: II: U.S. experience since 1984. Neurology 1989; 39: 201–7

    Article  PubMed  CAS  Google Scholar 

  65. Dreifuss FE, Santilli N, Langer DH, et al. Valproic acid hepatic fatalities: a retrospective review. Neurology 1987; 37: 379–85

    Article  PubMed  CAS  Google Scholar 

  66. Susman NM, McLain LW. A direct hepatotoxic effect of valproic acid. JAMA 1979; 242: 1173–4

    Article  Google Scholar 

  67. Liu C-S, Wu HM, Kao SH, et al. Serum trace elements glutathione, copper/zinc superoxide dismutase, and lipid peroxidation in epileptic patients with phenytoin or carbamazepine monotherapy. Clin Neuropharmacol 1998; 21: 62–4

    PubMed  CAS  Google Scholar 

  68. Pippenger CE. Update on epilepsy: approaches to prediction of idiosyncratic reactions antiepileptic drugs. J Clin Res Pharmacoepidemiol 1991; 5: 313–8

    Google Scholar 

  69. Thompson CD, Barthen MT, Hopper DW, et al. Quantification in patient urine samples of felbamate and three metabolites: acid carbamate and two mercapturic acids. Epilepsia 1999; 40: 769–76

    Article  PubMed  CAS  Google Scholar 

  70. Glauser TA, Titanic MK, Armstrong D, et al. Abnormalities in free radical scavenging enzyme activity in patients with felbamate-associated aplastic anemia. Epilepsia 1998; 39 Suppl. 2

  71. Leeder SP. Influence of felbamate and its metabolites on cell viability. Epilepsia 1998; 39 Suppl. 6: 42

    Google Scholar 

  72. Uetrecht JP, Hahid N, Whitfield D. Metabolism of vesnarinone by activated neutrophils: implications for vesnarinone-induced agranulocytosis. J Pharmacol Exp Ther 1994; 24: 865–72

    Google Scholar 

  73. Uetrecht JP. Reactive metabolites and agranulocytosis. Eur J Hematol 1996; 57: 83–8

    Article  Google Scholar 

  74. Uetrecht JP. The role of leucocyte-generated reactive metabolites in the pathhogenesis of idiosyncratic drug reactions. Drug Metab Rev 1992; 24: 299–366

    Article  PubMed  CAS  Google Scholar 

  75. Uetrecht JP. Evaluation of possible metabolic activation of felbamate by human neutrophils [abstract]. Epilepsia 1998; 39 Suppl. 6: 42

    Google Scholar 

  76. Gaedigk A, Spielberg SP, Grant DM. Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics 1994; 4: 142–55

    Article  PubMed  CAS  Google Scholar 

  77. Alter BP, Perhach JL. The effect of treatment with felbamate on erythropoiesis and erythroid progenitors in paediatric patients. Epilepsia 1998; 39 Suppl. 6: 163

    Google Scholar 

  78. Park BK, Pirmohamed M, Kitteringham NR. Idiosyncratic drug reactions: a mechanistic evaluation of risk factors. Br J Clin Pharmacol 1992; 34: 377–95

    Article  PubMed  CAS  Google Scholar 

  79. Pellock JM, Willmore J. Arational guide to routine blood monitoring in patients receiving antiepileptic drugs. Neurology 1991; 41: 961–4

    Article  PubMed  CAS  Google Scholar 

  80. Hart RG, Easton JD. Carbamazepine and haematological monitoring. Ann Neurol 1982: 11: 309–12

    Article  PubMed  CAS  Google Scholar 

  81. Camfield P, Camfield C, Dooley J, et al. Routine screening of blood and urine for severe reactions to anticonvulsant drugs in asymptomatic patients is of doubtful value. Can Med Assoc J 1989; 140: 1303–5

    CAS  Google Scholar 

  82. Bryant AE, Dreifuss FE. Hepatotoxicity associated with anti-epileptic drug therapy: avoidance, identification and management. CNS Drugs 1995; 4: 99–112

    Article  CAS  Google Scholar 

  83. Bryant AE, Dreifuss FE. Valproic acid hepatic fatalities: III: U.S. experience since 1986. Neurology 1995; 46: 465–9

    Article  Google Scholar 

  84. Wyllie E, Wyllie R. Routine laboratory monitoring for serious adverse effects of antiepileptic medications: the controversy. Epilepsia 1991; 51: S74–9

    Google Scholar 

  85. Phillips BLB, Montouris-Gore MA, Montouris CD. Current use of felbamate in adult and paediatric populations with partial and generalized seizures. Epilepsia 1998; 39 Suppl. 6: 128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Pellock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellock, J.M. Felbamate in Epilepsy Therapy. Drug-Safety 21, 225–239 (1999). https://doi.org/10.2165/00002018-199921030-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199921030-00006

Keywords

Navigation