Skip to main content
Log in

A Benefit-Risk Assessment of Medical Treatment for Uterine Leiomyomas

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The growth of a uterine leiomyoma stops and regresses after the menopause suggesting that leiomyoma growth is dependent on ovarian steroids. Therefore, estrogen has received much attention as the major factor responsible for the development of uterine leiomyomas, but progesterone also plays an important role in development of this disease.

Cytogenetic analyses of resected samples has revealed that about 40 to 50% of leiomyomas show karyotypically detectable chromosomal abnormalities.

Gonadotrophin releasing hormone (GnRH) agonists exert their action through the suppression of endogenous gonadotrophins and gonadal steroid secretion. Significant reductions of uterine/leiomyoma volume under GnRH agonist therapy has been reported in several studies. However, the leiomyoma generally returns to its pretreatment volume within a few months after discontinuation of the GnRH agonist. To minimise the adverse effects of hypoestrogenism during GnRH agonist treatment, add back therapy can be used (estrogen-progestin, progestin alone and recently tibolone).

Antiprogestins have a potential clinical utility in uterine leiomyomas. Mifepristone is a synthetic steroid with both antiprogesterone and antiglucocorticoid activities, that may have an inhibitory effect on growth of leiomyoma. Danazol is an isoxazole of 17β-ethinyl testosterone, a synthetic steroid, which has a suppressive effect on sex hormone binding globulin concentrations, resulting in efficacy in the short-term treatment of uterine leiomyomas. Gestrinone is a tri-enic steroid with antiestrogen and antiprogesterone properties and has been shown to reduce uterine volume and stop bleeding.

Growth factors play a relevant role on the pathophysiology of uterine leiomyoma and probably the inhibition of the action of growth factors on the myometrium will be the basis for future therapy. A number of agents are under investigation for treating uterine leiomyoma. Agents developed from increasing genetic knowledge of this condition could represent, in the next few years, new trends in the medical treatment of uterine leiomyomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Fig. 2
Fig. 3
Table III

Similar content being viewed by others

References

  1. Vollenhoven BJ, Reiter RC. Uterine leiomyomata: etiology, symptomatology and management. Fertil Steril 1981; 36: 433–45

    Google Scholar 

  2. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol 1990; 94: 435–8

    PubMed  CAS  Google Scholar 

  3. Vollenhoven BJ, Lawrence AS, Healy DL. Uterine fibroids: a clinical review. Br J Obstet Gynaecol 1990; 97: 285–98

    Article  PubMed  CAS  Google Scholar 

  4. Parazzini F, La Vecchia C, Negri E, et al. Epidemiologic characteristic of women with uterine fibroids: a case control study. Obstet Gynecol 1988 72: 853–7

    PubMed  CAS  Google Scholar 

  5. Cantuaria GHC, Angioli R, Frost L, et al. Comparison of bi-manual examination with ultrasound examination before hysterectomy for uterine leiomyomas. Obstet Gynecol 1998 92: 109–12

    Article  PubMed  CAS  Google Scholar 

  6. Brown AB, Chamberlain R, Te Linde RW. Myomectomy. Am J Obstet Gynecol 1956; 71: 759–63

    PubMed  CAS  Google Scholar 

  7. Englund K, Blanck A, Gustavsonn I, et al. Sex steroids receptors in human myometrium and fibroids: changes during the menstrual cycle and gonadotrophine-releasing hormone treatment. J Clin Endocrinol Metab 1998 83: 4092–6

    Article  PubMed  CAS  Google Scholar 

  8. Brandon DD, Erickson TE, Keenan EJ, et al. Estrogen receptor gene expression in human uterine leiomyomata. J Clin Endocrinol Metab 1995 80: 1876–81

    Article  PubMed  CAS  Google Scholar 

  9. Folkered EJ, Newton CJ, Davidson K, et al. Aromatase activity in uterine leiomyomata. J Steroid Biochem 1984 20: 1195–200

    Article  Google Scholar 

  10. Massart F, Becherini L, Gennari L, et al. Genotype distribution of estrogen receptor-gene polymorphisms in Italian women with surgical uterine leiomyomas. Fertil Steril 2001 75: 567–70

    Article  PubMed  CAS  Google Scholar 

  11. Sadan O, Van Iddekinge B, Savage N. Ethnic variation in estrogen and progesterone receptor concentration in leiomyoma and normal myometrium. Gynecol Endocrinol 1988; 2: 275–82

    Article  PubMed  CAS  Google Scholar 

  12. Kijerulff KH, Guzinski GM, Langenberg PW, et al. Hysterectomy and race. Obstet Gynecol 1993 82: 757–64

    Google Scholar 

  13. Brosens I, Deprest J, Dal Cin P, et al. Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril 1998 69: 232–5

    Article  PubMed  CAS  Google Scholar 

  14. Mashal RD, Schoemberg Fejzo ML, Friedmen AJ, et al. Analysis of androgen receptor DANN reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer 1994 11: 1–6

    Article  PubMed  CAS  Google Scholar 

  15. Maruo T, Matsuo H, Samoto T, et al. Effects of progesterone on uterine leiomyoma growth and apoptosis. Steroids 2000 65: 585–92

    Article  PubMed  CAS  Google Scholar 

  16. Kitawaki J, Koshiba H, Ishihara H, et al. Progesterone induction of 17b-hydroxysteroid deydrogenase type 2 during the secretory phase occurs in the endometrium of estrogen-dependent benign disease but not in normal endometrium. J Clin Endocrinol Metab 2000 85: 3292–6

    Article  PubMed  CAS  Google Scholar 

  17. Amoss M, Burgus R, Blackwell R, et al. Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin. Biochem Biophys Res Commun 1971 44: 205–10

    Article  PubMed  CAS  Google Scholar 

  18. Schally AV, Kastin AJ, Arimura A. Hypothalamic FSH and LH-regulating hormone, structure, physiology, and clinical studies. Fertil Steril 1971; 22: 703–21

    PubMed  CAS  Google Scholar 

  19. Matsuo H, Baba Y, Nai RMG, et al. Structure of the porcine LH- and FSH-releasing hormone. Biochem Biophys Res Commun 1971 43: 1334–9

    Article  PubMed  CAS  Google Scholar 

  20. Nestor JJ, Ho TL, Simpson RA, et al. Synthesis and biological activity of some very hydrophobic superagonist analogues of luteinizing hormone-releasing hormone. J Med Chem 1982 25: 795–801

    Article  PubMed  CAS  Google Scholar 

  21. Momany FA. Conformational analysis of the molecule luteinizing hormone-releasing hormone, 3: analog inhibitors and antagonist. J Med Chem 1978; 21: 63–8

    Article  PubMed  CAS  Google Scholar 

  22. Karten MJ, Rivier JE. Gonadotrophin-releasing hormone analog design: structure function studies toward the development of agonists and antagonists-rationale and perspective. Endocr Rev 1986; 7: 44–66

    Article  PubMed  CAS  Google Scholar 

  23. Fraser IS. Relationship between gonadotrophin-releasing hormone analogue therapy and bone loss; a review. Reprod Fertil Dev 1991; 3: 61–9

    Article  PubMed  CAS  Google Scholar 

  24. Sandow J, Stoeckemann K, Jerabek-Sandow G. Pharmacokinetics and endocrine effects of slow release formulations of LHRH analogues. J Steroid Biochem Mol Biol 1990; 37: 925–31

    Article  PubMed  CAS  Google Scholar 

  25. Coddington CC, Collins RL, Shawker TH, et al. Long acting gonadotrophin hormone releasing hormone analogue used to trait uteri. Fertil Steril 1986 45: 624–9

    PubMed  CAS  Google Scholar 

  26. Healy D, Lawson S, Abbott M, et al. Toward removing uterine fibroids without surgery: subcutaneous infusion of a luteinizing hormone releasing hormone agonist commencing in the luteal phase. J Clin Endocrinol Metab 1986 63: 619–25

    Article  PubMed  CAS  Google Scholar 

  27. Lumsden MA, West CP, Baird DT. Goserelin therapy before surgery for uterine fibroids. Lancet 1987 Jan 3; I(8523): 36–7

    Article  Google Scholar 

  28. Maheux R, Lemay A, Merat P. Use of intranasal luteinizing hormone releasing hormone agonist in uterine leiomyoma. Fertil Steril 1987; 43: 229–33

    Google Scholar 

  29. Matta WHM, Shaw RW, Nye M. Long-term follow-up of patients with uterine fibroids after treatment with the LHRH agonist buserelin. Br J Obstet Gynaecol 1989; 96: 200–6

    Article  PubMed  CAS  Google Scholar 

  30. Carr BR, Marshburn PB, Weatherall PT, et al. An evaluation of the effect of GnRH analogs and medroxyprogesterone acetate on uterine leiomyomata volume by MRI: a prospective, double blind, placebo-controlled, crossover trial. J Clin Endocrinol Metab 1993 76: 1217–23

    Article  PubMed  CAS  Google Scholar 

  31. Friedman AJ, Daly M, Juneau-Norcross M, et al. Recurrence of myomas after myomectomy in women pretreated with leuprolide acetate depot or placebo. Fertil Steril 1992 58: 205–8

    PubMed  CAS  Google Scholar 

  32. Friedman AJ, Barbieri RL, Benacerraf BR, et al. Treatment of leiomyomata with intranasal or subcutaneous leuprolide, a gonadotrophin releasing hormone agonist. Fertil Steril 1987 48: 560–4

    PubMed  CAS  Google Scholar 

  33. Cheng YM, Chou CY, Huang SC, et al. Oestrogen deficiency causes DNA damage in uterine leiomyoma cells: a possible mechanism for shrinkage of fibroids by GnRH agonists. BJOG 2001; 108(1): 95–102

    PubMed  CAS  Google Scholar 

  34. Golan A, Bukovsky I, Schneider D, et al. Preoperative GnRH-analog treatment in surgery for uterine myomas [abstract]. Gynecol Endocrinol 1993 7: 34

    Google Scholar 

  35. Stovall TG, Jenison EL, Memphis TN, et al. A comparative study of adjuvant GnRH agonist (Zoladex) therapy vs immediate surgery in the treatment of uterine myoma [abstract]. Gynecol Endocrinol 1993 7: 34

    Google Scholar 

  36. Campo S, Garcea N. Laparoscopic myomectomy in premenopausal women with and without preoperative treatment using GnRH-A. Hum Reprod 1999; 14: 44–8

    Article  PubMed  CAS  Google Scholar 

  37. Chardonnens D, Sylvan K, Walker D, et al. Triptorelin acetate administration in early pregnancy: case reports and review of the literature. Eur J Obstet Gynecol Reprod Biol 1998 80: 143–9

    Article  PubMed  CAS  Google Scholar 

  38. MRC Working Party on Children Conceived by IVF. Birth in Great Britain resulting from assisted conception 1978–87. BMJ 1990; 300: 1229–33

  39. Rufat P, Olivennes F, de Mouzon J, et al. Task force report on the outcome of pregnancies and children conceived by in vitro fertilization (France: 1987 to 1989). Fertil Steril 1990 61: 324–30

    Google Scholar 

  40. Bonduelle M, Wilikens A, Buysse A, et al. Prospective study of 877 children born after intracytoplasmatic sperm injection (ICSI) with ejaculated, epididymal and testicular spermatozoa and after replacement of cryopreserved embryos obtained after ICSI. Hum Reprod 1996 11: 131–59

    Article  PubMed  Google Scholar 

  41. Bonduelle M, Camus M, De Vos A, et al. Seven years of intracytoplasmic sperm injection and follow-up of 1987 subsequent children. Hum Reprod 1999 14: 243–64

    Article  PubMed  Google Scholar 

  42. Wisanto A, Bonduelle M, Camus M, et al. Obstetric outcome of 904 pregnancies after intracytoplasmic sperm injection. Hum Reprod 1996 11: 121–30

    Article  PubMed  Google Scholar 

  43. Bergh T, Ericson A, Hillensjo T, et al. Deliveries and children born after in-vitro fertilisation in Sweden 1982-95: a retrospective cohort study. Lancet 1999 354: 1579–85

    Article  PubMed  CAS  Google Scholar 

  44. Loft A, Petersen K, Erb K, et al. A Danish national cohort of 730 infants born after intra-cytoplasmic sperm injection (ICSI) 1994-1997. Hum Reprod 1999 14: 2143–8

    Article  PubMed  CAS  Google Scholar 

  45. Oliveness F, Fanchin R, Codee N, et al. Perinatal outcome and developmental studies on children born after IVF. Hum Reprod Update 2002 8: 117–28

    Article  Google Scholar 

  46. Westergaard HB, Johansen AM, Erb K, et al. Danish National In-Vitro Fertilization Registry 1994 and 1995: a controlled study of births, malformations and cytogenetic findings. Hum Reprod 1999 14: 1896–902

    Article  PubMed  CAS  Google Scholar 

  47. Shoham Z, Zosmer A, Insler V. Early miscarriage and fetal malformations after induction of ovulation (by clomiphene citrate and/or human menotropins), in vitro fertilization, and gamete intrafallopian transfer. Fertil Steril 1991; 55: 1–11

    PubMed  CAS  Google Scholar 

  48. Chrisp P, Goa KL. Goserelin: a review of its pharmacokinetic and pharmacodynamic properties and clinical use in sex-hormone-related conditions. Drugs 1991; 41: 254–86

    Article  PubMed  CAS  Google Scholar 

  49. Perry CM, Brodgen RN. Goserelin: a review of its pharmacokinetic and pharmacodynamic properties and therapeutic use in benign gyneacological disorders. Drugs 1996; 51: 319–46

    Article  PubMed  CAS  Google Scholar 

  50. Matta WH, Shaw RW, Hesp R, et al. Hypogonadism induced by luteinizing hormone releasing hormone analogues: effects on bone density in premenopausal women. BMJ 1987 294: 1523–4

    Article  PubMed  CAS  Google Scholar 

  51. Friedman AJ, Lobel SM, Rein MS, et al. Efficacy and safety consideration in women with uterine leiomyomas treated with gonadotrophin-releasing hormone agonist: the estrogen threshold hypothesis. Am J Obstet Gynecol 1990 163: 1114–9

    PubMed  CAS  Google Scholar 

  52. Friedman AJ, Barbieri RL, Doubilet PM, et al. A randomized double blind trial of a gonadotrophin releasing hormone agonist (leuprolide) with or without medroxy progesterone acetate in the treatment of leiomyomata uteri. FertilSteril 1988 49: 404–9

    CAS  Google Scholar 

  53. Friedman AJ. Treatment of leiomyomata uteri with short-term leuprolide followed by estrogen-progestin hormone replacement therapy for two years: a pilot study. Fertil Steril 1989; 51: 526–8

    PubMed  CAS  Google Scholar 

  54. Friedman AF, Daly M, Juneau-Norcross M, et al. A prospective, randomized trial of GnRH agonist plus estrogenprogestin or progestin ‘addback’ regimens for women with leiomyomata uteri. J Clin Endocrinol Metab 1993 76: 1439–45

    Article  PubMed  CAS  Google Scholar 

  55. Palomba S, Affinito P, Tommaselli GA, et al. A clinical trial of the effects of tibolone administered with gonadotrophin-releasing hormone analogues for the treatment of uterine leiomyomata. Fertil Steril 1998 70: 111–8

    Article  PubMed  CAS  Google Scholar 

  56. Rabinovici J, Rothman P, Monroe SE, et al. Endocrine effects and pharmacokinetics characteristics of a potent new gonadotrophin-releasing hormone antagonist (ganirelix) with minimal histamine-releasing properties: studies in postmenopausal women. J Clin Endocrinol Metab 1992 75: 1220–5

    Article  PubMed  CAS  Google Scholar 

  57. Kettel LM, Murphy AA, Morales AJ, et al. Rapid regression of uterine leiomyomas in response to daily administration of gonadotrophin-releasing hormone antagonist. Fertil Steril 1993 60: 642–6

    PubMed  CAS  Google Scholar 

  58. Ganirelix Dose-Finding Study Group. A double-blind, randomized, dose-finding study to assess the efficacy of the gonadotrophin-releasing hormone antagonist ganirelix (Org 37462) to prevent premature luteinizing hormone surges in women undergoing ovarian stimulation with recombinant follicle stimulating hormone (Puregon). Hum Reprod 1998; 13: 3023–31

    Google Scholar 

  59. Felberbaum RE, Germer U, Ludwig M, et al. Treatment of uterine fibroids with a slow-release formulation of the gonadotrophin releasing hormone antagonist Cetrorelix. Hum Reprod 1998 13: 1660–8

    Article  PubMed  CAS  Google Scholar 

  60. Gonzalez-Barcena D, Alvarez RB, Ochoa EP, et al. Treatment of uterine leiomyomas with luteinizing hormone-releasing hormone antagonist Cetrorelix. Hum Reprod 1997 12: 2028–35

    Article  PubMed  CAS  Google Scholar 

  61. Olivennes F, Mannaerts B, Struijs M. Perinatal outcome of pregnancy after GnRH antagonist (ganirelix) treatment during ovarian stimulation for conventional IVF or ICSI: a preliminary report. Hum Reprod 2001; 16: 1588–91

    Article  PubMed  CAS  Google Scholar 

  62. Borm G, Mannaerts B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: results of a controlled, randomized, multicentre trial. The European Orgalutran Study Group. Hum Reprod 2000; 15: 1490–8

    Article  PubMed  CAS  Google Scholar 

  63. Spitz IM, Bardin CW. Mifepristone (RU486): a modulator of progestin and glucocorticoid action. N Engl J Med 1993; 329: 404–12

    Article  PubMed  CAS  Google Scholar 

  64. Moguilewsky M, Philibert D. Biochemical profile of RU486. In: Bauleu EE, Segal SJ, editors. The antiprogestin steroid RU486 and human fertility control. New York (NY): Plenum Press; 1985: 87–97

    Chapter  Google Scholar 

  65. Bertagna X, Bertagna C, Luton JP, et al. The new steroid analog RU486 inhibits glucocorticoid action in man. J Clin Endocrinol Metab 1984; 59: 25–8

    Article  PubMed  CAS  Google Scholar 

  66. Donaldson MS, Dorflinger L, Brown SS, et al. Clinical applications of mifepristone (RU486) and other antiprogestins. Washington, DC: National Academy Press, 1993

    Google Scholar 

  67. Kettel LM, Murphy AA, Mortola JF, et al. Endocrine responses to long-term administration of the antiprogesterone RU486 in patients with pelvic endometriosis. Fertil Steril 1991 56: 402–7

    PubMed  CAS  Google Scholar 

  68. Baulieu EE. RU486: a decade on today and tomorrow. In: Donaldson MS, Dorflinger L, Brown SS, et al., editors. Clinical applications of mifepristone (RU486) and other antiprogestins. Washington, DC: National Academy Press, 1993: 71–119

    Google Scholar 

  69. Evans RM. The steroid and thyroid hormone receptor super-family. Science 1988; 240: 889–95

    Article  PubMed  CAS  Google Scholar 

  70. Weigel NL. Overview and background: mechanism of action of antiprogestins. In: Donaldson MS, Dorflinger L, Brown SS, et al., editors. Clinical applications of mifepristone (RU486) and other antiprogestins. Washington, DC: National Academy Press, 1993: 120–38

    Google Scholar 

  71. Kawaguchi K, Fujii S, Konishi I, et al. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol 1989 160: 637–41

    PubMed  CAS  Google Scholar 

  72. Murphy AA, Ketel LM, Morales AJ, et al. Regression of uterine leiomyomata in response to the antiprogesterone RU486. J Clin Endocrinol Metab 1993 76: 513–7

    Article  PubMed  CAS  Google Scholar 

  73. Murphy AA, Kettel LM, Morales AJ, et al. Dose response of RU486 in the treatment of symptomatic leiomyomata [abstract]. Toronto (ON): Society for Gynecologic Investigation, 1993

    Google Scholar 

  74. Schlaff WD, Zerhouni EA, Huth JA, et al. A placebo-controlled trial of a depot GnRH analogue (Leuprolide) in the treatment of uterine leiomyomata. Obstet Gynecol 1989 74: 856–62

    PubMed  CAS  Google Scholar 

  75. West CP, Lumsden MA, Lawson S, et al. Shrinkage of uterine fibroids during therapy with Goserelin (Zoladex): a LHRH agonist administered as a monthly subcutaneous depot. Fertil Steril 1987 48: 45–51

    PubMed  CAS  Google Scholar 

  76. Lamberts SWJ, Koper JW, de Jong FH. The endocrine effects of long-term treatment with mifepristone (RU 486). J Clin Endocrinol Metab 1991; 73: 187–91

    Article  PubMed  CAS  Google Scholar 

  77. Wolf JP, Hsiu JG, Anderson TL, et al. Noncompetitive antiestrogenic effect of RU486 in blocking the estrogen-stimulated luteinizing hormone surge and proliferative action of estradiol on endometrium in castrate monkey. Fertil Steril 1989 52: 1055–60

    PubMed  CAS  Google Scholar 

  78. Neulen J, Williams RF, Hodgen GD. RU486 (mifepristone) induction of dose dependent elevations of estradiol receptor in endometrium from ovariectomized monkeys. J Clin Endocrinol Metab 1990; 71: 1074–5

    Article  PubMed  CAS  Google Scholar 

  79. Murphy AA, Morales AJ, Sincich C. In vitro effects of RU486 on leiomyomata and myometrium [abstract]. San Antonio (TX): Society for Gynecologic Investigation, 1992

    Google Scholar 

  80. Reinsch RC, Murphy AA, Morales AJ, et al. The effects of RU 486 and leuprolide acetate on uterine artery blood flow in the fibroid uterus: a prospective, randomized study. Am J Obstet Gynecol 1994 170: 1623–7

    PubMed  CAS  Google Scholar 

  81. Herrmann W, Wyss R, Riondel A, et al. Effet d’un steroide anti-progesterone chez la femme: interruption du cycle menstruel et de la grossesse au debut. C R Acad Sci III 1982 294: 933–8

    CAS  Google Scholar 

  82. Birgerson L, Odlind V. The antiprogestational agent RU 486 as an abortifacient in early human pregnancy: a comparison of three dose regimens. Contraception 1988; 38: 391–400

    Article  PubMed  CAS  Google Scholar 

  83. Couzinet B, Le Strat N, Ulmann A, et al. Termination of early pregnancy by the progesterone antagonist RU 486 (mifepristone) [abstract]. N Engl J Med 1986 315: 1565–70

    Article  PubMed  CAS  Google Scholar 

  84. MishellJr DR, Shoupe D, Brenner PF, et al. Termination of early gestation with the anti-progestin steroid RU 486: medium versus low dose. Contraception 1987; 35: 307–21

    Article  PubMed  CAS  Google Scholar 

  85. Shoupe D, Mishell Jr DR, Brenner P, et al. Pregnancy termination with a high and medium dosage regimen of RU 486. Contraception 1986; 33: 455–61

    Article  PubMed  CAS  Google Scholar 

  86. Grunberg SM, Weiss MH, Spitz IM, et al. Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J Neurosurg 1991 74: 861–6

    Article  PubMed  CAS  Google Scholar 

  87. Deraedt R, Vannier B, Fournex R. Toxicological study on RU 486. In: Baulieu E-E, Segal SJ, editors. The antiprogestin steroid RU 486 and human fertility control. New York (NY): Plenum Press, 1985: 123–6

    Chapter  Google Scholar 

  88. Wolf JP, Chillik CF, Dubois C, et al. Tolerance of perinidatory primate embryos to RU 486 exposure in vitro and in vivo. Contraception 1990 41: 85–92

    Article  PubMed  CAS  Google Scholar 

  89. Lim BH, Lees DAR, Bjornsson S, et al. Normal development after exposure to mifepristone in early pregnancy. Lancet 1990 336: 257–8

    Article  PubMed  CAS  Google Scholar 

  90. Pons J-C, Imbert M-C, Elefant E, et al. Development after exposure to mifepristone in early pregnancy. Lancet 1991 338: 763

    Article  PubMed  CAS  Google Scholar 

  91. Goldman AS. Further studies of steroidal inhibitors of 3B-hydroxysteroid dehydrogenase in Pseudomonas testosteroni and in bovine adrenals. J Clin Endocrinol 1968 Nov; 28(11): 1539–46

    Article  CAS  Google Scholar 

  92. Olsson JH, Doberl A, Nilsson L. Danazol concentrations in human ovarian follicular fluid and their relationship to simultaneous serum concentrations. Fertil Steril 1988; 49: 42–6

    PubMed  CAS  Google Scholar 

  93. Rosi D, Neumann HC, Christiansen RG. Isolation, synthesis and biological activity of five metabolites of danazol. J Med Chem 1977 Mar; 20(3): 349–52

    Article  PubMed  CAS  Google Scholar 

  94. Dmowski WP. Endocrine properties and clinical application of danazol. Fertil Steril 1979 Mar; 31(3): 237–51

    PubMed  CAS  Google Scholar 

  95. Barbieri RL, Lee H, Ryan KJ. Danazol binding to rat androgen, glucocorticoid, progesterone, and estrogen receptors: correlation with biologic activity. Fertil Steril 1979 Feb; 31(2): 185–6

    Google Scholar 

  96. Chamness GC, Asch RH, Pauerstein CJ. Danazol binding and translocation of steroid receptors. Am J Obstet Gynecol 1980; 136(4): 426–9

    PubMed  CAS  Google Scholar 

  97. Tamaya T, Furuta N, Motoyama T, et al. Mechanisms of antiprogestational action of synthetic steroids. Acta Endocrinol (Copenh) 1978; 88(1): 190–8

    CAS  Google Scholar 

  98. Potts GO, Beyler AL, Schane HP. Pituitary gonadotrophin inhibitory activity of danazol. Fertil Steril 1974; 25(4): 367–72

    PubMed  CAS  Google Scholar 

  99. Dmowski WP, Scholer HFL, Mahesh VB, et al. Danazol: a synthetic steroid derivative with interesting physiologic properties. Fertil Steril 1971 Jan; 22(1): 9–18

    PubMed  CAS  Google Scholar 

  100. Wentz AC, Jones GS, Sapp KC, et al. Progestational activity of danazol in the human female subject. Am J Obstet Gynecol 1976 Oct 1; 126(3): 378–84

    PubMed  CAS  Google Scholar 

  101. Summary of Basis for FDA Approval of Danazol, NDA 17-557. Washington, DC. Food and Drug Administration, United States Public Health Service, Department of Health, Education, and Welfare, 1975

  102. Gershagen S, Doberl A, Rannevik G. Changes in the SHBG concentration during danazol treatment. Acta Obstet Gynecol Scand Suppl. 1984; 123: 117–23

    Article  PubMed  CAS  Google Scholar 

  103. Pugeat MM, Dunn JF, Nisula BC. Transport of steroid hormones: interactions of 70 drugs with testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 1981; 53: 69–75

    Article  PubMed  CAS  Google Scholar 

  104. Bevan JR, Dowsett M, Jeffcoate SL. Endocrine effects of danazol in the treatment of endometriosis. Br J Obstet Gynecol 1984; 91: 160–6

    Article  CAS  Google Scholar 

  105. Barbieri RL, Canick JA, Makris A, et al. Danazol inhibits steroidogenesis. Fertil Steril 1977; 28(8): 809–13

    PubMed  CAS  Google Scholar 

  106. Barbieri RL, Canick JA, Ryan KJ. Danazol inhibits steroidogenesis in the rat testis in vitro. Endocrinology 1977; 101(6): 1676–82

    Article  PubMed  CAS  Google Scholar 

  107. Barbieri RL, Osathanondh R, Canick JA, et al. Danazol inhibits human adrenal 21 and 11B-hydroxylation. Steroids 1980; 35(3): 251–63

    Article  PubMed  CAS  Google Scholar 

  108. Williams TA, Edelson J, Ross RW. A radioimmunoassay for danazol. Steroids 1978; 31(2): 205–17

    Article  PubMed  CAS  Google Scholar 

  109. Creange JE, Potts GO. A competitive radioligand assay for danazol. Steroids 1974; 23(3): 411–20

    Article  PubMed  CAS  Google Scholar 

  110. De Leo V, la Marca A, Morgante G. Short-term treatment of uterine fibromyomas with danazol. Gynecol Obstet Invest 1999; 47: 258–62

    Article  PubMed  Google Scholar 

  111. De Leo V, Morgante G, Lanzetta D, et al. Danazol administration after gonadotrophin-releasing hormone analogue reduces rebound of uterine myomas. Hum Reprod 1997 12: 357–60

    Article  PubMed  Google Scholar 

  112. Barbieri RL. Danazol: molecular, endocrine and clinical pharmacology. Prog Clin Biol Res 1990; 323: 241–52

    PubMed  CAS  Google Scholar 

  113. Dmowski WP, Cohen MR. Antigonadotropin (danazol) in the treatment of endometriosis: evaluation of posttreatment fertility and three-year follow-up data. Am J Obstet Gynecol 1978; 130: 41–8

    PubMed  CAS  Google Scholar 

  114. Quagliarello J, Greco MA. Danazol and urogenital sinus formation in pregnancy. Fertil Steril 1985; 43: 939–42

    PubMed  CAS  Google Scholar 

  115. Rosa FW. Virilization of the female fetus with maternal danazol exposure. Am J Obstet Gynecol 1984; 149: 99–100

    PubMed  CAS  Google Scholar 

  116. Barbieri RL, Evans S, Kistner RW. Danazol in the treatment of endometriosis: analysis of 100 cases with a 4-year follow-up. Fertil Steril 1982; 37: 737–46

    PubMed  CAS  Google Scholar 

  117. Coutinho EM. Treatment of large fibroids with high doses of gestrinone. Gynecol Obstet Invest 1990; 30: 44–7

    Article  PubMed  CAS  Google Scholar 

  118. Coutinho EM. Gestrinone in the treatment of myomas. Acta Obstet Gynecol Scand Suppl 1989; 150: 39–46

    PubMed  CAS  Google Scholar 

  119. Coutinho EM, Goncalves MT. Long-term treatment of leiomyomas with gestrinone. Fertil Steril 1989 Jun; 51: 939–46

    PubMed  CAS  Google Scholar 

  120. Grattarola R, Li CH. Effect of growth hormone and its combination with estradiol-17b on the uterus of hypophysectomized-ovariectomized rats. Endocrinology 1959; 65: 802–10

    Article  PubMed  CAS  Google Scholar 

  121. Sharara FI, Nieman LK. Growth hormone receptor messenger ribouncleic acid expression in leiomyoma and surrounding myometrium. Am J Obstet Gynecol 1995; 173: 814–9

    Article  PubMed  CAS  Google Scholar 

  122. Choen O, Schindel B, Homburg R. Uterine leiomyomata: a feature of acromegaly. Hum Reprod 1998; 13: 1945–6

    Article  Google Scholar 

  123. Rein MS, Friedman AJ, Pandian MR, et al. The secretion of insulin-like growth factor-I and II by explants cultures of fibroids and myometrium from women treated with a gonadotrophin-releasing hormone agonist. Obstet Gynecol 1990 76: 388–94

    PubMed  CAS  Google Scholar 

  124. Giudice LC, Irwin JC, Dsupin BA, et al. Insulin-like growth factor (IGF), IGF binding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod 1993 8: 1796–806

    PubMed  CAS  Google Scholar 

  125. Clemmons DR. Exposure to platelet-derived growth factor modulates the porcine aortic smooth muscle cell response to somatomedin-C. Endocrinology 1985; 117: 77–83

    Article  PubMed  CAS  Google Scholar 

  126. De Leo V, la Marca A, Morgante G, et al. Administration of somatostatin analogue reduces uterine and myoma volume in women with uterine leiomyomata. Fertil Steril 2001; 75: 632–3

    Article  PubMed  Google Scholar 

  127. Stewart EA, Friedman AJ. Steroidal treatment of myomas: preoperative and long term medical therapy. Semin Reprod Endocrinol 1992; 10: 344–57

    Article  Google Scholar 

  128. Nowak RA, Rein MS, Heffner LJ, et al. Production of prolactin by smooth muscle cells cultured from human uterine fibroid tumors. J Clin Endocrinol Metab. 1993 76: 1308–13

    Article  PubMed  CAS  Google Scholar 

  129. Stewart EA, Floor AE, Jain P, et al. Increased expression of messenger RNA for collagen type I, collagen type III, and fibronectin in myometrium of pregnancy. Obstet Gynecol 1995 86: 417–22

    Article  PubMed  CAS  Google Scholar 

  130. Sato M, Rippy MK, Bryant HU. Raloxifene, tamoxifen, nafoxidine, or estrogen effects on reproductive and nonreproductive tissues in ovaiectomized rats. FASEB J 1996; 10: 905–12

    PubMed  CAS  Google Scholar 

  131. Walker CL, Burroughs KD, Davis B, et al. Preclinical evidence for therapeutic efficacy of selective estrogen receptor modulators for uterine leiomyoma. J Soc Gynecol Investig 2000 7: 249–61

    Article  PubMed  CAS  Google Scholar 

  132. Sadan O, Shimon G, Dror S, et al. The role of tamoxifen in the treatment of symptomatic uterine leiomyomata: a pilot study. Eur J Obstet Gynecol 2000 96: 186

    Google Scholar 

  133. Lumsden MA, West CP, Baird DT. Tamoxifen prolongs luteal phase in premenopausal women but has no effect on the size of uterine fibroids. Clin Endocrinol Oxf 1989; 31: 335–43

    Article  PubMed  CAS  Google Scholar 

  134. Potts Jr PV, Hopkins MP, Chang AE, et al. Rapid growth of leiomyoma in patiens receiving tamoxifen. Am J Obstet Gynecol 1992; 166(1 Pt 1): 167–8

    Google Scholar 

  135. De Leo V, la Marca A, Morgante G, et al. Randomized contol study of the effects of raloxifene on serum lipids and homocysteine in older women. Am J Obstet Gynecol 2001; 184: 350–3

    Article  PubMed  Google Scholar 

  136. Porter KB, Tsibris JC, Porter GW, et al. Effects of raloxifene in a guinea pig model for leiomyomas. Am J Obstet Gynecol 1998 179: 1283–7

    Article  PubMed  CAS  Google Scholar 

  137. Palomba S, Sammartino A, Di Carlo C, et al. Effects of raloxifene treatment on uterine leiomyomas in postmenopausal women. Fertil Steril 2001 76: 38–43

    Article  PubMed  CAS  Google Scholar 

  138. Minakuchi K, Kawamura N, Tsujimura A, et al. Remarkable and persistent shrinkage of uterine leiomyoma associated with interferon alfa treatment for hepatitis. Lancet 1999 353: 2127–8

    Article  PubMed  CAS  Google Scholar 

  139. Lee BS, Stewart EA, Sahakian M, et al. Interferon-alpha is a potent inhibitor of basic fibroblast growth factor-stimulated cell proliferation in human uterine cells. Am J Reprod Immunol 1998 40: 19–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr L. Pasqui, Dr B. Talluri and Mrs D. Ceccarelli for their assistance in the preparation of the manuscript.

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Leo, V., Morgante, G., La Marca, A. et al. A Benefit-Risk Assessment of Medical Treatment for Uterine Leiomyomas. Drug-Safety 25, 759–779 (2002). https://doi.org/10.2165/00002018-200225110-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225110-00002

Keywords

Navigation