Skip to main content
Log in

Predicting Effective Drug Concentrations for Individual Patients

Determinants of Pharmacodynamic Variability

  • Review Article
  • Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Variability in the relationship between pharmacological effect intensity and drug concentration (pharmacodynamics) is pronounced, usually exceeding pharmacokinetic variability. Whereas interindividual differences are large, intra-individual differences are much smaller, unless the individual experiences certain pathophysiological changes such as deterioration of renal function or progression of a chronic disease (for example, Parkinson’s disease). Failure to appreciate the magnitude of interindividual variability in the pharmacodynamics of a drug can compromise fixed dose clinical trial outcomes, making the drug appear less effective or more toxic.

In the face of pharmacodynamic variability it becomes important to identify useful predictors (covariates) of pharmacodynamic individuality to facilitate individually optimised pharmacotherapy. This requires clinical trial designs that incorporate extensive patient profiling, well beyond the usual short list of demographics (such as age, gender, race, bodyweight and smoking habits). In searching for predictors, it is helpful to appreciate the factors that may account for interindividual differences in the relationship between pharmacological effect intensity and drug concentration in plasma or other appropriate fluid. They include receptor density and affinity, the formation and elimination kinetics of endogenous ligands (such as the enkephalins), postreceptor transduction processes, homeo-static responses and the kinetic characteristics of transporters involved in drug transfer between fluids of distribution and the biophase.

Correction of drug concentrations in plasma for protein binding, consideration of active and interactive metabolites, stereospecific assays and attention to drug distribution disequilibria are essential for successful identification of factors affecting pharmacodynamic variability. Pharmaceutical delivery systems (the ‘hardware’) must be combined with guidance for individualising drug dosage (the ’software’ or user’s manual) to provide for optimal and cost-effective pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Knott C, Reynolds F. Therapeutic drug monitoring in pregnancy: rationale and current status. Clin Pharmacokinet. 1990; 19: 425–33.

    Article  PubMed  CAS  Google Scholar 

  2. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmaco-kinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979; 25: 358–71.

    PubMed  CAS  Google Scholar 

  3. Lemmens HJM, Dyck JB, Shafer SL, et al. Pharmacokineticpharmacodynamic modeling in drug development: application to the investigational opioid trefentanil. Clin Pharmacol Ther. 1994; 56: 261–71.

    Article  PubMed  CAS  Google Scholar 

  4. Tiseo PJ, Thaler HT, Lapin J, et al. Morphine-6-glucur-onide concentrations and opioid-related side effects: a survey in cancer patients. Pain. 1995; 61: 47–54.

    Article  PubMed  CAS  Google Scholar 

  5. Warfield CA, Kahn CH. Acute pain management: programs in US hospitals and experiences and attitudes among US adults. Anesthesiology. 1995; 83: 1090–4.

    Article  PubMed  CAS  Google Scholar 

  6. Breitbart W, Rosenfeld BD, Passik SD, et al. The undertreatment of pain in ambulatory AIDs patients. Pain. 1996; 65: 243–9.

    Article  PubMed  CAS  Google Scholar 

  7. Fiset P, Lemmens HLM, Egan TE, et al. Pharmacodynamic modeling of the electroencephalographic effects of flumazenil in healthy volunteers sedated with midazolam. Clin Pharmacol Ther. 1995; 58: 567–82.

    Article  PubMed  CAS  Google Scholar 

  8. Koopmans R, Oosterhuis B, Karemaker JM, et al. Pharmacokinetic pharmacodynamic modelling of oxprenolol in man using continuous non-invasive blood pressure monitoring. Eur J Clin Pharmacol. 1998; 34: 395–400.

    Article  Google Scholar 

  9. Adam HK, Kay B, Douglas EJ. Blood disoprofol levels in anaesthetized patients. Anaesth. 1982; 37: 536–40.

    Article  CAS  Google Scholar 

  10. Padrini R, Piovan D, Busa M, et al. Pharmacodynamic variability of flecainide assessed by QRS changes. Clin Pharmacol Ther. 1993; 53: 59–64.

    Article  PubMed  CAS  Google Scholar 

  11. Jonkers RE, Koopmans RP, Settels JJ, et al. Kinetic-dynamic modeling of β1-adrenoceptor mediated cardiovascular effects of xamoterol in healthy volunteers at rest. 3rd Symposium on Frontiers of Pharmacokinetics and Pharmacodynamics; 1990; Baltimore.

    Google Scholar 

  12. Alradi AO, Carruthers SG. Evaluation and application of the linear variable differential transformer technique for the assessment of human dorsal hand vein alpha-receptor activity. Clin Pharmacol Ther. 1985; 38: 495–502.

    Article  PubMed  CAS  Google Scholar 

  13. Wald JA, Salazar DE, Cheng H, et al. Two-compartment basophil cell trafficking model for methylprednisolone pharmacodynamics. J Pharmacokinet Biopharm. 1991; 19: 521–36.

    PubMed  CAS  Google Scholar 

  14. Levy G, Ebling WF, Forrest A. Concentration- or effect-controlled clinical trials with sparse data. Clin Pharmacol Ther. 1994; 56: 1–8.

    Article  PubMed  CAS  Google Scholar 

  15. Reid JL. Dose-plasma concentration-effect relationship of felodipine in essential hypertension: a review. J Cardiovasc Pharmacol 1990; 15 (4 Suppl.): S50–6.

    Article  PubMed  Google Scholar 

  16. Levy G. Variability in animal and human pharmacodynamic studies. In: Rowland M, Sheiner LB, Steimer J-L, editors. Variability in drug therapy: description, estimation, and control. New York: Raven Press, 1985: 125–38.

    Google Scholar 

  17. Mandema JW, Stanski DR. Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther. 1996; 60: 619–35.

    Article  PubMed  CAS  Google Scholar 

  18. Lapka R, Sechser T, Rejholec V, et al. Pharmacokinetics and pharmacodynamics of conventional and controlled release formulations of metipranolol in man. Eur J Clin Pharmacol. 1990; 38: 243–7.

    Article  PubMed  CAS  Google Scholar 

  19. Pitsiu M, Parker EM, Aarons L, et al. Population pharmacokinetics and pharmacodynamics of warfarin in healthy young adults. Eur J Pharm Sci 1993 1: 151–7.

    Article  CAS  Google Scholar 

  20. Egan TD, Minto CF, Hermann DJ, et al. Remifentanyl versus alfentanil. Comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology. 1996; 84: 821–33.

    Article  PubMed  CAS  Google Scholar 

  21. Adkison KDK, Powers KM, Artru AA, et al. Effect of paraaminohippurate on the efflux of valproic acid from the central nervous system of the rabbit. Epilepsy Res. 1996; 23: 95–104.

    Article  PubMed  CAS  Google Scholar 

  22. Naora K, Ichikawa N, Nishimura N, et al. Saturable transport of valproic acid in rat choroid plexus in vitro. J Pharm Sci. 1996; 85: 423–6.

    Article  PubMed  CAS  Google Scholar 

  23. Nutt DJ, Woodward WR, Hammerstad JP. Pharmacokinetics of intravenous levodopa: implications for mechanisms of therapeutic actions of levodopa and carbidopa. In: Fahan S, et al., editors. Recent development in Parkinson’s disease. New York: Raven Press, 1986: 239–45.

    Google Scholar 

  24. Montgomery EB. Pharmacokinetics and pharmacodynamics of levodopa. Neurology. 1992; 42 Suppl. 1: 17–22.

    PubMed  Google Scholar 

  25. Friedman A, Kaufer D, Shemer J, et al. Tur-Kaspa: pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nat Med. 1996; 2: 1382–5.

    Article  PubMed  CAS  Google Scholar 

  26. Tamsen A, Sakurada T, Wahlström A, et al. Postoperative demand for analgesics in relation to individual levels of endorphins and substance P in cerebrospinal fluid. Pain. 1982; 13: 171–83.

    Article  PubMed  CAS  Google Scholar 

  27. Dundee JW, Richards RK. Effect of azotemia upon the action of intravenous barbiturate anesthesia. Anesthesiology. 1954; 15: 333–46.

    Article  PubMed  CAS  Google Scholar 

  28. Danhof M, Hisaoka M, Levy G. Kinetics of drug action in disease states. II: effect of experimental renal dysfunction on phenobarbital concentrations in rats at onset of loss of righting reflex. J Pharmacol Exp Ther. 1984; 230: 627–31.

    PubMed  CAS  Google Scholar 

  29. Hisaoka M, Levy G. Kinetics of drug action in disease states. XIII: effect of dialyzable component(s) of uremic blood on phenobarbital concentrations in rats at onset of loss of righting reflex. J Pharmacol Exp Ther. 1985; 234: 180–3.

    PubMed  CAS  Google Scholar 

  30. Whitfield LR, Levy G. Relationship between concentration and anticoagulant effect of heparin in plasma of normal subjects: magnitude and predictability of interindividual differences. Clin Pharmacol Ther. 1980; 28: 509–615.

    Article  PubMed  CAS  Google Scholar 

  31. Whitfield LR, Schentag JJ, Levy G. Relationship between concentration and anticoagulant effect of heparin in plasma of hospitalized patients: magnitude and predictability of interindividual differences. Clin Pharmacol Ther. 1982; 32: 503–16.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou H-H, Koshakji RP, Silberstein DJ, et al. Altered sensitivity to and clearance of propranolol in men of Chinese descent as compared with American whites. N Engl J Med. 1989; 320: 565–70.

    Article  PubMed  CAS  Google Scholar 

  33. Lew KH, Ludwig EA, Milad MA, et al. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1993; 54: 402–14.

    Article  PubMed  CAS  Google Scholar 

  34. Contin M, Riva R, Albani F, et al. Pharmacokinetic optimisation in the treatment of Parkinson’s disease. Clin Pharmacokinet. 1996; 30: 463–81.

    Article  PubMed  CAS  Google Scholar 

  35. Triggs EJ, Charles BG, Contin M, et al. Population pharmacokinetics and pharmacodynamics of oral levodopa in parkinsonian patients. Eur J Clin Pharmacol. 1996; 51: 59–68.

    Article  PubMed  CAS  Google Scholar 

  36. Levy G. The case for preclinical pharmacodynamics. In: Yacobi A, Shah VP, Skelly JP, et al., editors. Integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. New York: Plenum Press, 1993: 7–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, G. Predicting Effective Drug Concentrations for Individual Patients. Clin Pharmacokinet 34, 323–333 (1998). https://doi.org/10.2165/00003088-199834040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199834040-00005

Keywords

Navigation