Skip to main content
Log in

The Development of the Bradykinin Agonist Labradimil as a Means to Increase the Permeability of the Blood-Brain Barrier

From Concept to Clinical Evaluation

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Labradimil (Cereport®; also formerly referred to as RMP-7) is a 9-amino-acid peptide designed for selectivity for the bradykinin B2 receptor and a longer plasma half-life than bradykinin. It has been developed to increase the permeability of the blood-brain barrier (BBB) and is the first compound with selective bradykinin B2 receptor agonist properties to progress from concept design through to tests of efficacy in patients.

In vitro studies demonstrate that labradimil has a longer half-life than bradykinin and selectively binds to bradykinin B2 receptors, initiating typical bradykinin-like second messenger systems, including increases in intracellular calcium and phosphatidylinositol turnover. Initial proof of principle studies using electron microscopy demonstrated that intravenous labradimil increases the permeability of the BBB by disengaging the tight junctions of the endothelial cells that comprise the BBB. Autoradiographic studies in rat models further demonstrated that labradimil increases the permeability of the BBB in gliomas. Intravenous or intra-arterial labradimil increases the uptake of many different radiolabelled tracers and chemotherapeutic agents into the tumour in a dose-related fashion. These effects are selective for the tumour and for the brain surrounding the tumour, and are particularly robust in tumour areas that are normally relatively impermeable. The increased chemotherapeutic concentrations are maintained for at least 90 minutes, well beyond the transient effects on the BBB.

The increase in permeability with labradimil occurs rapidly but is transient, in that restoration of the BBB occurs very rapidly (2 to 5 minutes) following cessation of infusion. Even with continuous infusion of labradimil, spontaneous restoration of the barrier begins to occur within 10 to 20 minutes. Collectively, these data demonstrate that the B2 receptor system that modulates permeability of the BBB is highly sensitive and autoregulated and that careful attention to the timing of labradimil and the chemotherapeutic agent is important to achieve maximal effects.

Survival studies in rodent models of both gliomas and metastatic tumours in the brain demonstrate that the enhanced uptake observed with the combination of labradimil and water-soluble chemotherapeutics enhances survival to a greater extent than achieved with chemotherapy alone. Finally, preliminary clinical trials in patients with gliomas provide confirmatory evidence that labradimil permeabilises the blood-brain tumour barrier and might, therefore, be used to increase delivery of agents such as carboplatin to tumours without the toxicity typically associated with dose escalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davson H, Segal M. Physiology of the CSF and blood-brain barriers. Boca Raton (FL): CRC Press, 1996

    Google Scholar 

  2. Pardridge W. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 1995; 15: 5–36

    Article  CAS  Google Scholar 

  3. Rapoport S. Blood-brain barrier in physiology and medicine. New York: Raven Press, 1976

    Google Scholar 

  4. Bartus RT. The blood-brain barrier as a target for pharmacological modulation. Curr Opin Drug Disc Dev 1999; 2(2): 152–67

    CAS  Google Scholar 

  5. Betz A. An overview of the multiple functions of the blood-brain barrier. In: Frankenheim J, Brown R, editors. Bioavailability of drugs to the brain and the blood-brain barrier. Washington, DC: US Government Printing Office, 1992: 54–72

    Google Scholar 

  6. Zlokovic B, McComb J, Perlmutter L, et al. Neuroactive peptides and amino acid at the blood-brain barrier: possible implications for drug abuse. In: Frankenheim J, Brown R, editors. Bioavailability of drugs to the brain and the blood-brain barrier. Washington, DC: US Government Printing Office, 1992: 26–42

    Google Scholar 

  7. Black K. Biochemical opening of the blood-brain barrier. Adv Drug Deliv Rev 1995; 15: 37–52

    Article  CAS  Google Scholar 

  8. Raymond J, Robertson D, Dinsdale H. Pharmacological modification of bradykinin induced breakdown of the blood-brain barrier. Can J Physiol Pharmacol 1986; 13: 214–20

    CAS  Google Scholar 

  9. Inamura T, Black KL. Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J Cereb Blood Flow Metab 1994; 14: 862–70

    Article  PubMed  CAS  Google Scholar 

  10. Nomura T, Inamura T, Black K. Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 1994; 658: 62–6

    Article  Google Scholar 

  11. Bhoola K, Figueroa C, Worthy K. Bioregulation of kinins: kallikreins, kininogens and kinases. Pharm Rev 1992; 44: 1–80

    PubMed  CAS  Google Scholar 

  12. Erdös E. Some old and some new ideas on kinin metabolism. J Cardiovasc Pharmacol 1990; 15 Suppl. 6: S20–4

    PubMed  Google Scholar 

  13. Kumakura S, Kamo I, Tsurufuji S. Role of bradykinin in the vascular permeability response induced by carrageenin in rats. Br J Pharmacol 1988; 93: 739–46

    Article  PubMed  CAS  Google Scholar 

  14. Grous J, Elliott P, Bartus R. Development of RMP-7: a novel bradykinin agoinst that increases delivery of chemotherapeutics to gliomas. In: Salmon S, editor. Adjuvant therapy of cancer. Philadelphia (PA): Lippincott-Raven, 1997: 19–31

    Google Scholar 

  15. Boddy A, Thomas H. RMP-7: potential as an adjuvant to the drug treatment of brain tumours. CNS Drugs 1997; 7(4): 257–63

    Article  CAS  Google Scholar 

  16. Regoli D, Rhaleb N, Drapeau G, et al. Kinin receptor subtypes. J Cardiovasc Pharmacol 1990; 15 Suppl 6: S30–8

    PubMed  CAS  Google Scholar 

  17. Hess J, Borkowski J, Young G, et al. Cloning and pharmacological characterization of a human bradykinin (B2) receptor. Biochem Biophys Res Commun 1992; 184: 260–8

    Article  PubMed  CAS  Google Scholar 

  18. Menke J, Borkowski J, Bierlo K, et al. Expression cloning of a human B1 bradykinin receptor. J Biol Chem 1994; 269: 21583–6

    PubMed  CAS  Google Scholar 

  19. Hamayoun P, Harik S. Bradykinin receptors of cerebral microvessels stimulate phosphoinositide turnover. J Cereb Blood Flow Metab 1991; 11: 557–66

    Article  Google Scholar 

  20. Doctrow SR, Abelleira SM, Curry LA, et al. The bradykinin analog RMP-7 increases intracellular free calcium levels in rat brain microvascular endothelial cells. J Pharmacol Exp Ther 1994; 271: 229–37

    PubMed  CAS  Google Scholar 

  21. Unterberg A, Wahl M, Baethmann A. Effects of bradykinin on permeability and diameter of pial vessels in vivo. J Cereb Blood Flow Metab 1984; 4: 574–85

    Article  PubMed  CAS  Google Scholar 

  22. Wahl M, Young A, Edvinnson L, et al. Effects of bradykinin on pial arteries and arterioles in vitro and in situ. J Cereb Blood Flow Metab 1983; 3: 231–7

    Article  PubMed  CAS  Google Scholar 

  23. Yong T, Gao X, Koizumi S, et al. Role of peptidases in bradykinin-induced increase in vascular permeability in vivo. Circ Res 1992; 70: 952–9

    Article  PubMed  CAS  Google Scholar 

  24. Regoli D, Barabe J. Pharmacology of bradykinin and related kinins. Pharmacol Rev 1980; 32: 1–46

    PubMed  CAS  Google Scholar 

  25. Regoli D, Marceau F, Lavigne J. Induction of B1 receptors for kinins in the rabbit by a bacterial lipopolysaccharide. Eur J Pharmacol 1981; 71: 105–15

    Article  PubMed  CAS  Google Scholar 

  26. Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci 1993; 16: 99–104

    Article  PubMed  CAS  Google Scholar 

  27. Kozarich J, Musso G, Malfroy-Camine B. Increasing blood-brain barrier permeability with permeabilizer peptides. Cambridge (MA): Alkermes, Inc., 1993

    Google Scholar 

  28. Marceau F, Gendreau M, Barabe J, et al. The degradation of bradykinin (BK) and of des-Arg9-BK in plasma. Can J Physiol Pharmacol 1981; 39: 131–8

    Article  Google Scholar 

  29. Regoli D, Drapeau G, Dion S, et al. New selective agonists for neurokinin receptors: pharmacological tools for receptor characterization. Trends Pharmacol Sci 1988; 9: 290–5

    Article  PubMed  CAS  Google Scholar 

  30. Rhaleb N, Telemaque S, Rouissi N, et al. Structure-activity studies of bradykinin and related peptides: B2-receptor antagonists. Hypertension 1991; 17: 107–15

    Article  PubMed  CAS  Google Scholar 

  31. Bartus RT, Elliott P, Hayward N, et al. Permeability of the BBB by the bradykinin agonist, RMP-7: evidence for a sensitive, auto-regulated, receptor-mediated system. Immunopharmacology 1996; 33: 270–8

    Article  PubMed  CAS  Google Scholar 

  32. McCarthy D, Potter D, Nicolaides E. An in vivo estimation of the potencies and half-lives of synthetic bradykinin and kallidin. J Pharmacol Exp Ther 1965; 148: 117–22

    PubMed  CAS  Google Scholar 

  33. Straub JA, Akiyama A, Parmar P. In vitro plasma metabolism of RMP-7. Pharm Res 1994; 11: 1673–6

    Article  PubMed  CAS  Google Scholar 

  34. Sanovich E, Bartus RT, Friden PM, et al. Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 1995; 705: 125–35

    Article  PubMed  CAS  Google Scholar 

  35. Elliott PJ, Hayward NJ, Dean RL, et al. Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. Cancer Res 1996; 56: 3998–4005

    PubMed  CAS  Google Scholar 

  36. Emerich D, Snodgrass P, Pink M, et al. Central analgesic actions of loperamide following transient permeation of the blood brain barrier with Cereport (RMP-7). Brain Res 1998; 801: 259–66

    Article  PubMed  CAS  Google Scholar 

  37. Elliott P, Hayward N, Dean R, et al. Dissociation of blood-brain barrier permeability and the hypotensive effects of the bradykinin B2 agonist RMP-7. Immunopharmacology 1996; 33: 205–8

    Article  PubMed  CAS  Google Scholar 

  38. Riley M, Kim N, Watson V, et al. Intraarterial administration of the bradykinin agonist, RMP-7 and carboplatin: a toxicologie evaluation in swine. J Neurooncol 1998; 36: 167–78

    Article  PubMed  CAS  Google Scholar 

  39. Bartus RT, Elliott PJ, Dean RL, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 1996; 142: 14–28

    Article  PubMed  CAS  Google Scholar 

  40. Elliott PJ, Hayward NJ, Huff MR, et al. Unlocking the blood-brain barrier: a role for RMP-7 in brain tumor therapy. Exp Neurol 1996; 141: 214–24

    Article  PubMed  CAS  Google Scholar 

  41. Bartus R, Snodgrass P, Dean R, et al. Evidence that Cereport’s ability to increase permeability of rat gliomas in dependent upon extent of tumor growth: implications for treating newly emerging tumor colonies. Exp Neurol 2000; 161: 234–44

    Article  PubMed  CAS  Google Scholar 

  42. Del Maestro R. Angiogenesis. In: Berger M, Wilson C, editors. The gliomas. Philadelphia (PA): WB Saunders, 1999: 87–106

    Google Scholar 

  43. Stewart P, Farrell C, Del Maestro R. The effect of cellular microenvironment on vessels in the brain. Part 1: vessel structure in tumour, peritumour and brain from humans with malignant glioma. Int J Radiat Biol 1991; 60: 125–30

    Article  PubMed  CAS  Google Scholar 

  44. Emerich D, Snodgrass P, Dean R, et al. Enhanced uptake of carboplatin into brain tumors with intravenous Cereport (RMP-7): dramatic differences as a function of dosing parameters. Br J Cancer 1999; 80: 964–70

    Article  PubMed  CAS  Google Scholar 

  45. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–202

    Article  PubMed  CAS  Google Scholar 

  46. Bartus R, Snodgrass P, Dean R, et al. Use of Cereport (RMP-7) to increase delivery of carboplatin to gliomas: insight and parameters for intracarotid infusion via a single-lumen cannula. Drug Deliv 1999; 6: 15–21

    Article  CAS  Google Scholar 

  47. Barth R, Yang W, Moeschberger M, et al. Enhanced delivery of boronophenylalanine for neutron capture therapy of brain tumors using the bradykinin analogue, Cereport (RMP-7). Neurosurgery 1999; 47: 189–98

    Google Scholar 

  48. Hochberg F, Pruit A. Assumptions from the radiotherapy of glioblastoma. Neurology 1980; 30: 907–11

    Article  PubMed  CAS  Google Scholar 

  49. Lesser G, Grossman S. The chemotherapy of high grade astrocytomas. Semin Oncol 1994; 21: 220–35

    PubMed  CAS  Google Scholar 

  50. Walner K, Galichih J, Krol G, et al. Patterns of failure following treatment of glioblastoma and anaplatic astrocytoma. Int J Radiat Oncol Biol Phys 1989; 16: 1405–9

    Article  Google Scholar 

  51. Nelson D, McDonald J, Lapham L, et al. Central nervous system tumors. In: Rubin R, McDonald S, Qazi R, editors. Clinical oncology. Philadelphia (PA): WB Saunders, 1992: 617–44

    Google Scholar 

  52. Inamura T, Nomura T, Bartus R, et al. Intracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to brain tumors. J Neurosurg 1994; 81: 752–8

    Article  PubMed  CAS  Google Scholar 

  53. Nakano S, Matsukado K, Black K. Enhanced cytokines delivery and intercellular adhesion molecule 1 (ICAM-1) expression in glioma by intracarotid infusion of bradykinin analog, RMP-7. Neurol Res 1997; 19: 501–8

    PubMed  CAS  Google Scholar 

  54. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5: 881–7

    Article  PubMed  CAS  Google Scholar 

  55. Bartus R, Snodgrass P, Marsh J, et al. Intravenous Cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels and enhances survival. J Pharmacol Exp Ther 2000; 293(3): 903–11

    PubMed  CAS  Google Scholar 

  56. Emerich D, Dean R, Marsh J, et al. Intravenous Cereport (RMP-7) enhances delivery of carboplatin and increases survival in rats with metastatic tumors in the brain. Pharm Res 2000 Oct; 17(10): 1212–9

    Article  PubMed  CAS  Google Scholar 

  57. Fike J, Gobbel G, Mesiwala A, et al. Cerebrovascular effects of the bradykinin analog RMP-7 in normal and irradiated dog brain. J Neurooncol 1998; 37: 199–215

    Article  PubMed  CAS  Google Scholar 

  58. Snodgrass P, Emerich D, Bartus R. Obligatory tachyphylaxis of bradykinin B2 receptors following increased permeability of the blood brain barrier by intravenous Cereport [abstract]. Society for Neuroscience; 2000 Nov 4–9; New Orleans

  59. Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 1996; 39: 125–34

    Article  PubMed  CAS  Google Scholar 

  60. Black K, Cloughesy T, Huang S, et al. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. J Neurosurg 1997; 86: 603–9

    Article  PubMed  CAS  Google Scholar 

  61. Cloughesy T, Black K, Gobin Y, et al. Intra-arterial Cereport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. Neurosurgery 1999; 44: 270–8

    Article  PubMed  CAS  Google Scholar 

  62. Ford JM, Miles KA, Hayball MP, et al. A simplified technique for measurement of blood-brain barrier permeability using CT: preliminary results of the effect of RMP-7. In: Faulkner K, Carey B, Crellin A, et al., editors. Quantitative imaging in oncology. London: British Institute of Radiology, 1996: 1–3

    Google Scholar 

  63. Ford J, Osborn C, Barton T, et al. A Phase I study of intravenous Cereport (RMP-7) with carboplatin patients with progression of malignant glioma. Eur J Cancer 1998; 34(11): 1807–11

    Article  PubMed  CAS  Google Scholar 

  64. Gregor A, Lind M, Newman H, et al. Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. J Neurooncol 1999; 44: 137–45

    Article  PubMed  CAS  Google Scholar 

  65. Thomas H, Newell D, Calvert A, et al. Clinical studies with the novel bradykinin analog RMP-7 and carboplatin in patients with glioma [abstract]. Br J Cancer 1996; 73: 15

    Article  Google Scholar 

  66. Siddik Z, Grous J, Chang S, et al. Pharmacokinetics of carboplatin and RMP-7 in patients with recurrent malignant glioma [abstract]. American Society of Clinical Oncology Annual Meeting; 1996 May 18–21; Philadelphia

    Google Scholar 

  67. Yung W, Mechtler L, Gleason M. Intravenous carboplatin for recurrent malignant glioma: a phase II study. J Clin Oncol 1991; 9: 860–4

    PubMed  CAS  Google Scholar 

  68. Osborn C, Stenning S, Downing G. Survival following treatment with RMP-7 and carboplatin in malignant glioma who grade III-IV: comparison with matched controls. European Congress of Clinical Oncologists; 1997 Sep; Hamburg, Germany.

    Google Scholar 

  69. Postmus PE, Smit EF, Haaxma-Reiche H, et al., and the European Organization for Research and Treatment of Cancer: Lung Cancer Cooperative Group. Teniposide for brain metastastases of small-cell lung cancer: a phase II study. J Clin Oncol 1995; 13: 660–6

    PubMed  CAS  Google Scholar 

  70. Boogerd W, Sande JVD, Zandwijk NV. Teniposide sometimes effective in brain metastases from non-small cell lung cancer. J Neurooncol 1999; 41: 285–9

    Article  PubMed  CAS  Google Scholar 

  71. Jain R. Critical issues in tumor microcirculation, angiogenesis and metastasis: biological significance and clinical relevance [course notes]. Cambridge (MA): Harvard Medical School, 1996

    Google Scholar 

  72. Emerich D, Snodgrass P, Dean R, et al. Bradykinin modulation of tumor vasculature I: activation of B2 receptors increases delivery of chemotherpaeutic agents into solid peripheral tumors, enhancing their efficacy. J Pharmacol Exp Ther 2001; 296: 623–31

    PubMed  CAS  Google Scholar 

  73. Emerich D, Snodgrass P, Dean R, et al. Bradykinin modulation of tumor vasculature II: activation of nitric oxide and phospholipase A2/prostaglandin signaling pathways synergistically modify vascular physiology and morphology to enhance delivery of chemotherapeutic agents to tumors. J Pharmacol Exp Ther 2001; 296: 632–41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. Bartus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerich, D.F., Dean, R.L., Osborn, C. et al. The Development of the Bradykinin Agonist Labradimil as a Means to Increase the Permeability of the Blood-Brain Barrier. Clin Pharmacokinet 40, 105–123 (2001). https://doi.org/10.2165/00003088-200140020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140020-00003

Keywords

Navigation