Skip to main content
Log in

Mitochondrial Dysfunction as the Molecular Basis of Bipolar Disorder

Therapeutic Implications

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Multiple lines of evidence, such as impaired energy metabolism in the brain detected by magnetic resonance spectroscopy, a possible role of maternal inheritance, co-morbidity with mitochondrial diseases, the effects of mood stabilisers on mitochondria, increased mitochondrial DNA (mtDNA) deletion in the brain, and association with mtDNA mutations/polymorphisms or nuclear-encoded mitochondrial genes, suggest that mitochondrial dysfunction is an important component of bipolar disorder. Global reduction of mitochondria-related gene expression in the postmortem brains of patients with bipolar disorder may also be an indicator, but such findings are affected by sample pH and thus need to be interpreted with caution. A recently developed animal model carrying mtDNA deletion in neurons suggested that accumulation of mtDNA deletions causes bipolar disorder-like phenotypes.

The next step in the study of mitochondrial dysfunction in bipolar disorder should be clarification of how mitochondrial dysfunction, a nonspecific risk factor, can cause specific symptoms of bipolar disorder. Two hypothetical mechanisms are mtDNA neuroplasticity and nonvisual photoreception impairment.

Further study of mitochondrial dysfunction in bipolar disorder is expected to be useful for the development of new mood stabilisers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodwin FK, Jamison KR. Manic-depressive illness. Vol. 36. New York: Oxford University Press, 1990

    Google Scholar 

  2. Geddes JR, Burgess S, Hawton K, et al. Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomised controlled trials. Am J Psychiatry 2004; 161(2): 217–22

    PubMed  Google Scholar 

  3. Bowden CL, Calabrese JR, Sachs G, et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 2003; 60(4): 392–400

    CAS  PubMed  Google Scholar 

  4. Tohen M, Calabrese JR, Sachs GS, et al. Randomized, placebo-controlled trial of olanzapine as maintenance therapy in patients with bipolar I disorder responding to acute treatment with olanzapine. Am J Psychiatry 2006; 163(2): 247–56

    PubMed  Google Scholar 

  5. Okuma T, Inanaga K, Otsuki S, et al. A preliminary double-blind study on the efficacy of carbamazepine in prophylaxis of manic depressive illness. Psychopharmacology (Berl) 1981; 73(1): 95–6

    CAS  Google Scholar 

  6. Chou JC, Keck PE Jr, Rhodes LJ, et al. A randomised, placebo-controlled 12-month trial of divalproex and lithium in treatment of outpatients with bipolar I disorder. Divalproex Maintenance Study Group. Arch Gen Psychiatry 2000; 57(5): 481–9

    PubMed  Google Scholar 

  7. Kato T, Kuratomi G, Kato N. Genetics of bipolar disorder. Drugs Today (Barc) 2005; 41: 335–44

    CAS  Google Scholar 

  8. Bachmann RF, Schloesser RJ, Gould TD, et al. Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 2005; 32: 173–202

    CAS  PubMed  Google Scholar 

  9. Chuang DM. The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann N Y Acad Sei 2005; 1053: 195–204

    CAS  Google Scholar 

  10. Hajek T, Carrey N, Alda M. Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 2005; 7: 393–403

    PubMed  Google Scholar 

  11. Haldane M, Frangou S. New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 943–60

    PubMed  Google Scholar 

  12. Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2: 180–90

    CAS  PubMed  Google Scholar 

  13. Bown CD, Wang JF, Chen B, et al. Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord 2002; 4: 145–51

    CAS  PubMed  Google Scholar 

  14. Kakiuchi C, Iwamoto K, Ishiwata M, et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 2003; 35: 171–5

    CAS  PubMed  Google Scholar 

  15. Kato T, Inubushi T, Kato N. Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 1998; 10: 133–47

    CAS  PubMed  Google Scholar 

  16. Kato T, Shioiri T, Takahashi S, et al. Measurement of brain phosphoinositide metabolism in bipolar patients using in vivo 31P-MRS. J Affect Disord 1991; 22: 185–90

    CAS  PubMed  Google Scholar 

  17. Renshaw PF, Schnall MD, Leigh Jr JS. In vivo 31P NMR spectroscopy of agonist-stimulated phosphatidylinositol metabolism in cat brain. Magn Reson Med 1987; 4: 221–6

    CAS  PubMed  Google Scholar 

  18. Silverstone PH, O’Donnell T, Ulrich M, et al. Dextro-amphetamine increases phosphoinositol cycle activity in volunteers: an MRS study. Hum Psychopharmacol 2002; 17: 425–9

    CAS  PubMed  Google Scholar 

  19. Kato T, Takahashi S, Shioiri T, et al. Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993; 27: 53–9

    CAS  PubMed  Google Scholar 

  20. Kato T, Murashita J, Kamiya A, et al. Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur Arch Psychiatry Clin Neurosci 1998; 248: 301–6

    CAS  PubMed  Google Scholar 

  21. Kato T, Takahashi S, Shioiri T, et al. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1994; 31: 125–33

    CAS  PubMed  Google Scholar 

  22. Kato T, Shioiri T, Murashita J, et al. Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded SIP-MRS. Psychol Med 1995; 25: 557–66

    CAS  PubMed  Google Scholar 

  23. Barbiroli B, Montagna P, Martinelli P, et al. Defective brain energy metabolism shown by in vivo 31P MR spectroscopy in 28 patients with mitochondrial cytopathies. J Cereb Blood Flow Metab 1993; 13: 469–74

    CAS  PubMed  Google Scholar 

  24. Suomalainen A, Majander A, Haltia M, et al. Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J Clin Invest 1992; 90: 61–6

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McMahon FJ, Stine OC, Meyers DA, et al. Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 1995; 56: 1277–86

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stine OC, Luu S, Zito M. The possible association between affective disorder and partially deleted mitochondrial DNA. Biol Psychiatry 1993; 42: 311–6

    Google Scholar 

  27. Kato T, Takahashi Y. Deletion of leukocyte mitochondrial DNA in bipolar disorder. J Affect Disord 1996; 37: 67–73

    CAS  PubMed  Google Scholar 

  28. Kato T, Winokur G, McMahon FJ, et al. Quantitative analysis of leukocyte mitochondrial DNA deletion in affective disorders. Biol Psychiatry 1997; 42: 311–6

    CAS  PubMed  Google Scholar 

  29. Kato T, Stine OC, McMahon FJ, et al. Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 1997; 42: 871–5

    CAS  PubMed  Google Scholar 

  30. Kirk R, Furlong RA, Amos W, et al. Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder. Am J Hum Genet 1999; 65: 508–18

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McMahon FJ, Chen YS, Patel S, et al. Mitochondrial DNAsequence diversity in bipolar affective disorder. Am J Psychiatry 2000; 157: 1058–64

    CAS  PubMed  Google Scholar 

  32. Kato T, Kunugi H, Nanko S, et al. Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 2000; 96: 182–6

    CAS  PubMed  Google Scholar 

  33. Kato T, Kunugi H, Nanko S, et al. Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord 2001; 62: 151–64

    CAS  PubMed  Google Scholar 

  34. Kazuno AA, Munakata K, Nagai T, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2006; 2: 1167–77

    CAS  Google Scholar 

  35. Chen G, Zeng WZ, Yuan PX, et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72: 879–82

    CAS  PubMed  Google Scholar 

  36. Chen G, Huang LD, Jiang YM, et al. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 1999; 72: 1327–30

    CAS  PubMed  Google Scholar 

  37. Zhou R, Gray NA, Yuan P, et al. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 2005; 25: 4493–502

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamawaki S, Kagaya A, Tawara Y, et al. Intracellular calcium signaling systems in the pathophysiology of affective disorders. Life Sci 1998; 62: 1665–70

    CAS  PubMed  Google Scholar 

  39. Post RM, Weiss SR. A speculative model of affective illness cyclicity based on patterns of drug tolerance observed in amygdala-kindled seizures. Mol Neurobiol 1996; 13: 33–60

    CAS  PubMed  Google Scholar 

  40. Mancuso M, Filosto M, Bellan M, et al. POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology 2004; 62: 316–8

    CAS  PubMed  Google Scholar 

  41. Van Goethem G, Luoma P, Rantamaki M, et al. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 2004; 63: 1251–7

    PubMed  Google Scholar 

  42. Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 2004; 364: 875–82

    CAS  PubMed  Google Scholar 

  43. Di Fonzo A, Bordoni A, Crimi M, et al. POLG mutations in sporadic mitochondrial disorders with multiple mtDNA deletions. Hum Mutat 2003; 22: 498–9

    PubMed  Google Scholar 

  44. Kaukonen J, Juselius JK, Tiranti V, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 2000; 289: 782–5

    CAS  PubMed  Google Scholar 

  45. Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001; 28: 223–31

    CAS  PubMed  Google Scholar 

  46. Van Goethem G, Dermaut B, Lofgren A, et al. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 2001; 28: 211–2

    PubMed  Google Scholar 

  47. Longley MJ, Clark S, Yu Wai Man C, et al. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am J Hum Genet 2006; 78: 1026–34

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Siciliano G, Tessa A, Petrini S, et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul Disord 2003; 13: 162–5

    CAS  PubMed  Google Scholar 

  49. Deschauer M, Hudson G, Muller T, et al. A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 2005; 15: 311–5

    PubMed  Google Scholar 

  50. Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A 2005; 102: 17687–92

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasahara T, Kubota M, Miyauchi T, et al. Mice with neuronspecific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 2006; 11: 523, 577-93

    CAS  Google Scholar 

  52. Boles RG, Burnett BB, Gleditsch K, et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am J Med Genet B Neuropsychiatr Genet 2005; 137: 20–4

    Google Scholar 

  53. Burnett BB, Gardner A, Boles RG. Mitochondrial inheritance in depression, dysmotility and migraine? J Affect Disord 2005; 88: 109–16

    CAS  PubMed  Google Scholar 

  54. Kato T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol Psychiatry 2001; 6: 625–33

    CAS  PubMed  Google Scholar 

  55. Fattal O, Budur K, Vaughan AJ, et al. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47: 1–7

    PubMed  Google Scholar 

  56. Munakata K, Tanaka M, Mori K, et al. Mitochondrial DNA 3644T→C mutation associated with bipolar disorder. Genomics 2004; 84: 1041–50

    CAS  PubMed  Google Scholar 

  57. Kazuno AA, Munakata K, Mori K, et al. Mitochondrial DNA sequence analysis of patients with ‘atypical psychosis’. Psychiatry Clin Neurosci 2005; 59: 497–503

    CAS  PubMed  Google Scholar 

  58. Kakiuchi C, Ishiwata M, Kametani M, et al. Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol 2005; 8: 515–22

    CAS  PubMed  Google Scholar 

  59. Konradi C, Eaton M, MacDonald ML, et al. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–8

    CAS  PubMed  Google Scholar 

  60. Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241–53

    CAS  PubMed  Google Scholar 

  61. Vawter MP, Tomita H, Meng F, et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006; 11: 615, 663-79

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun X, Wang JF, Tseng M, et al. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 2006; 31: 189–96

    PubMed  PubMed Central  Google Scholar 

  63. Ryan MM, Lockstone HE, Huffaker SJ, et al. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11(10): 965–78

    CAS  PubMed  Google Scholar 

  64. Nakatani N, Hattori E, Ohnishi T, et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 2006; 15: 1949–62

    CAS  PubMed  Google Scholar 

  65. Benes FM, Matzilevich D, Burke RE, et al. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006; 11: 241–51

    CAS  PubMed  Google Scholar 

  66. Li JZ, Vawter MP, Walsh DM, et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 2004; 13: 609–16

    CAS  PubMed  Google Scholar 

  67. Tomita H, Vawter MP, Walsh DM, et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 2004; 55: 346–52

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Munakata K, Iwamoto K, Bundo M, et al. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 2005; 57: 525–32

    CAS  PubMed  Google Scholar 

  69. Karry R, Klein E, Ben Shachar D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 2004; 55: 676–84

    CAS  PubMed  Google Scholar 

  70. Nakatani N, Aburatani H, Nishimura K, et al. Comprehensive expression analysis of a rat depression model. Pharmacogenomics J 2004; 4: 114–26

    CAS  PubMed  Google Scholar 

  71. Washizuka S, Kakiuchi C, Mori K, et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet 2003; 120B: 72–8

    PubMed  Google Scholar 

  72. Washizuka S, Iwamoto K, Kazuno A, et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the NIMH pedigrees. Biol Psychiatry 2004; 56(7): 483–9

    CAS  PubMed  Google Scholar 

  73. Washizuka S, Kametani M, Sasaki T, et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 301–4

    Google Scholar 

  74. Washizuka S, Kakiuchi C, Mori K, et al. Expression of mitochondria-related genes in lymphoblastoid cells from patients with bipolar disorder. Bipolar Disord 2005; 7: 146–52

    CAS  PubMed  Google Scholar 

  75. Dager SR, Friedman SD, Parow A, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 2004; 61: 450–8

    CAS  PubMed  Google Scholar 

  76. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005; 10: 900–19

    CAS  PubMed  Google Scholar 

  77. Saydoff JA, Liu LS, Garcia RA, et al. Oral uridine pro-drug PN401 decreases neurodegeneration, behavioral impairment, weight loss and mortality in the 3-nitropropionic acid mitochondrial toxin model of Huntington’s disease. Brain Res 2003; 994: 44–54

    CAS  PubMed  Google Scholar 

  78. Klivenyi P, Gardian G, Calingasan NY, et al. Neuroprotective effects of oral administration of triacetyluridine against MPTP neurotoxicity. Neuromolecular Med 2004; 6: 87–92

    CAS  PubMed  Google Scholar 

  79. Carlezon Jr WA, Mague SD, Parow AM, et al. Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol Psychiatry 2005; 57: 343–50

    CAS  PubMed  Google Scholar 

  80. Repligen and the Stanley Medical Research Institute expand development agreement for uridine for bipolar depression [online]. Available from URL: http://news.biocompare.com/newsstory.asp?.id=103536 [Accessed 2006 Oct 19]

  81. Roubertoux PL, Sluyter F, Carlier M, et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 2003; 35: 65–9

    CAS  PubMed  Google Scholar 

  82. Einat H, Yuan P, Manji HK. Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 2005; 165: 172–80

    CAS  PubMed  Google Scholar 

  83. Linseman DA, Butts BD, Precht TA, et al. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 2004; 24: 9993–10002

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dokucu ME, Yu L, Taghert PH. Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology 2005; 30: 2216–24

    CAS  PubMed  Google Scholar 

  85. Hernandez F, Borrell J, Guaza C, et al. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 2002; 83: 1529–33

    CAS  PubMed  Google Scholar 

  86. Machado-Vieira R, Kapczinski F, Soares JC. Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 209–24

    PubMed  Google Scholar 

  87. Einat H, Manji HK, Belmaker RH. New approaches to modeling bipolar disorder. Psychopharmacol Bull 2003; 37: 47–63

    PubMed  Google Scholar 

  88. Mott JL, Zhang D, Zassenhaus HP. Mitochondrial DNA mutations, apoptosis, and the misfolded protein response. Rejuvenation Res 2005; 8: 216–26

    CAS  PubMed  Google Scholar 

  89. Peng TI, Yu PR, Chen JY, et al. Visualizing common deletion of mitochondrial DNA-augmented mitochondrial reactive oxygen species generation and apoptosis upon oxidative stress. Biochim Biophys Acta 2006; 1762: 241–55

    CAS  PubMed  Google Scholar 

  90. Magarinos AM, Deslandes A, McEwen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113–22

    CAS  PubMed  Google Scholar 

  91. Nakamura S. Axonal sprouting of noradrenergic locus coeruleus neurons following repeated stress and antidepressant treatment. Prog Brain Res 1991; 88: 587–98

    CAS  PubMed  Google Scholar 

  92. Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49

    CAS  PubMed  Google Scholar 

  93. Glantz LA, Gilmore JH, Lieberman JA, et al. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 2006; 81: 47–63

    PubMed  Google Scholar 

  94. Magnusson J, Orth M, Lestienne P, et al. Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells. Exp Cell Res 2003; 289: 133–42

    CAS  PubMed  Google Scholar 

  95. Diaz F, Bayona-Bafaluy MP, Rana M, et al. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 2002; 30: 4626–33

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 2006; 5: 113–9

    CAS  PubMed  Google Scholar 

  97. Mrosovsky N, Hattar S. Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 2003; 20: 989–99

    CAS  PubMed  Google Scholar 

  98. Takao M, Morigiwa K, Sasaki H, et al. Impaired behavioral suppression by light in metabotropic glutamate receptor subtype 6-deficient mice. Neuroscience 2000; 97: 779–87

    CAS  PubMed  Google Scholar 

  99. Kramer A, Yang FC, Snodgrass P, et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 2001; 294: 2511–5

    CAS  PubMed  Google Scholar 

  100. Hashimoto H, Shintani N, Baba A. New insights into the central PACAPergic system from the phenotypes in PACAP and PACAP receptor-knockout mice. Ann N Y Acad Sci 2006; 1070: 75–89

    CAS  PubMed  Google Scholar 

  101. Lenox RH, Gould TD, Manji HK. Endophenotypes in bipolar disorder. Am J Med Genet 2002; 114: 391–406

    PubMed  Google Scholar 

  102. Lewy AJ, Wehr TA, Goodwin FK, et al. Manic-depressive patients may be supersensitive to light. Lancet 1981; I: 383–4

    Google Scholar 

  103. Meesters Y, van Houwelingen CA. Rapid mood swings after unmonitored light exposure [letter]. Am J Psychiatry 1998; 155: 306

    CAS  PubMed  Google Scholar 

  104. Barbini B, Benedetti F, Colombo C, et al. Dark therapy for mania: a pilot study. Bipolar Disord 2005; 7: 98–101

    PubMed  Google Scholar 

  105. Wehr TA, Turner EH, Shimada JM, et al. Treatment of rapidly cycling bipolar patient by using extended bed rest and darkness to stabilize the timing and duration of sleep. Biol Psychiatry 1998; 43: 822–8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Kato is supported by grants from the Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute; Grant-in-Aid from the Japanese Ministry of Health and Labour; and a Grant-in-Aid from the Japanese Ministry of Education, Culture, Sports and Science. Dr Kato wishes to thank patients and family members who participated in studies discussed in this review, as well as all collaborators and laboratory members who contributed to the conduct of these studies. RIKEN has a patent pending for the transgenic mice carrying a neuron-specific accumulation of mitochondrial DNA deletion as an animal model of bipolar disorder. Dr Kato has received honoraria from Kyowa Hakko Kogyo, Affymetrix Japan, Eli Lilly Japan, GlaxoSmithKline and Taisho Pharmaceutical. Dr Kato has also received grants from the National Alliance for Research on Schizophrenia and Depression, and the Stanley Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadafumi Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, T. Mitochondrial Dysfunction as the Molecular Basis of Bipolar Disorder. CNS Drugs 21, 1–11 (2007). https://doi.org/10.2165/00023210-200721010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200721010-00001

Keywords

Navigation