Skip to main content
Log in

Potential Psychiatric Applications of Metabotropic Glutamate Receptor Agonists and Antagonists

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Drugs acting at metabotropic glutamate receptors (mGluRs) are among the most promising agents under development for the treatment of psychiatric disorders. The research in this area is at a relatively early stage, as there are no drugs acting at mGluRs that have been approved for the treatment of any psychiatric disorder. However, in the areas of schizophrenia, anxiety disorders and mood disorders, research conducted in animal models appears to translate well into efficacy in human laboratory-based models of psychopathology and in preliminary clinical trials. Further, the genes coding for mGluRs are implicated in the risk for a growing number of psychiatric disorders. This review highlights the best studied mGluR strategies for psychiatry, based on human molecular genetics, studies in animal models and preliminary clinical trials. It describes the potential value of mGluR2 and mGluR5 agonists and positive allosteric modulators for the treatment of schizophrenia. It also reviews evidence that group II mGluR agonists and positive allosteric modulators as well as group I mGluR antagonists might also treat anxiety disorders and some forms of depression, while mGluR2 and group I mGluR antagonists (particularly mGluR5 antagonists) might have antidepressant properties. This review also links growing insights into the role of glutamate in the pathophysiology of these disorders to hypothesized mGluR-related treatment mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Schoepp DD, Conn PJ. Metabotropic glutamate receptors. Pharmacol Biochem Behav 2002; 74(1): 255–6

    Article  PubMed  CAS  Google Scholar 

  2. Moghaddam B. Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 2004; 174(1): 39–44

    Article  CAS  Google Scholar 

  3. Krystal JH, Petrakis IL, Mason G, et al. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol Ther 2003; 99(1): 79–94

    Article  PubMed  CAS  Google Scholar 

  4. Krystal JH, Moghaddam B. Contributions of glutamate and GABA systems to the neurobiology and treatment of schizophrenia. In: Hirsch S, Weinberger D, editors. Schizophrenia. 3rd ed. Oxford (UK): Blackwell Science, 2010

    Google Scholar 

  5. Chambers AC, Bremner JD, Moghaddam B, et al. Glutamate and post-traumatic stress disorder: toward a neurobiology of dissociation. Semin Clin Neuropsychiatry 1999; 4(4): 274–81

    PubMed  CAS  Google Scholar 

  6. Sanacora G, Zarate CAJ, Krystal JH, et al. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nature Rev: Drug Discov 2008; 7(5): 426–37

    Article  CAS  Google Scholar 

  7. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9(11): 984–97, 979

    Article  PubMed  CAS  Google Scholar 

  8. Gupta DS, McCullumsmith RE, Beneyto M, et al. Meta-botropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 2005; 57(3): 123–31

    Article  PubMed  CAS  Google Scholar 

  9. Ohnuma T, Augood SJ, Arai H, et al. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res 1998; 56(1-2): 207–17

    Article  PubMed  CAS  Google Scholar 

  10. Sartorius LJ, Weinberger DR, Hyde TM, et al. Expression of a GRM3 splice variant is increased in the dorsolateral prefrontal cortex of individuals carrying a schizophrenia risk SNP. Neuropsychopharmacology 2008; 33(11): 2626–34

    Article  PubMed  CAS  Google Scholar 

  11. Corti C, Crepaldi L, Mion S, et al. Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. Biol Psychiatry 2007; 62(7): 747–55

    Article  PubMed  CAS  Google Scholar 

  12. Tkachev D, Mimmack ML, Huffaker SJ, et al. Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int J Neuropsychopharmacol 2007; 10(4): 557–63

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Maeso J, Ang RL, Yuen T, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008; 452(7183): 93–7

    Article  PubMed  CAS  Google Scholar 

  14. Richardson-Burns SM, Haroutunian V, Davis KL, et al. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry 2000; 47(1): 22–8

    Article  PubMed  CAS  Google Scholar 

  15. Crook JM, Akil M, Law BC, et al. Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann’s area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Mol Psychiatry 2002; 7(2): 157–64

    Article  PubMed  CAS  Google Scholar 

  16. Pietraszek M, Gravius A, Schafer D, et al. mGluR5, but not mGluR1, antagonist modifies MK-801-induced locomotor activity and deficit of prepulse inhibition. Neuropharmacology 2005; 49(1): 73–85

    Article  PubMed  CAS  Google Scholar 

  17. Maeda J, Suhara T, Okauchi T, et al. Different roles of group I and group II metabotropic glutamate receptors on phencyclidine-induced dopamine release in the rat prefrontal cortex. Neurosci Lett 2003; 336(3): 171–4

    Article  PubMed  CAS  Google Scholar 

  18. Chan MH, Chiu PH, Sou JH, et al. Attenuation of ketamine-evoked behavioral responses by mGluR5 positive modulators in mice. Psychopharmacology (Berl) 2008; 198(1): 141–8

    Article  CAS  Google Scholar 

  19. Lecourtier L, Homayoun H, Tamagnan G, et al. Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-methyl-D-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol Psychiatry 2007; 62(7): 739–46

    Article  PubMed  CAS  Google Scholar 

  20. Homayoun H, Stefani MR, Adams BW, et al. Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004; 29(7): 1259–69

    Article  PubMed  CAS  Google Scholar 

  21. Pietraszek M, Rogoz Z, Wolfarth S, et al. Opposite influence of MPEP, an mGluR5 antagonist, on the locomotor hyperactivity induced by PCP and amphetamine. J Physiol Pharmacol 2004; 55(3): 587–93

    PubMed  CAS  Google Scholar 

  22. Campbell UC, Lalwani K, Hernandez L, et al. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology (Berl) 2004; 175(3): 310–8

    Article  CAS  Google Scholar 

  23. Imre G, Salomons A, Jongsma M, et al. Effects of the mGluR2/3 agonist LY379268 on ketamine-evoked behaviours and neurochemical changes in the dentate gyrus of the rat. Pharmacol Biochem Behav 2006; 84(3): 392–9

    Article  PubMed  CAS  Google Scholar 

  24. Moghaddam B, Adams BW. Reversal of phencyclidine ef-fects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281(5381): 1349–52

    Article  PubMed  CAS  Google Scholar 

  25. Woolley ML, Pemberton DJ, Bate S, et al. The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology (Berl) 2008; 196(3): 431–40

    Article  CAS  Google Scholar 

  26. Rorick-Kehn LM, Johnson BG, Knitowski KM, et al. In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology (Berl) 2007; 193(1): 121–36

    Article  CAS  Google Scholar 

  27. Cartmell J, Monn JA, Schoepp DD. The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 1999; 291(1): 161–70

    PubMed  CAS  Google Scholar 

  28. Cartmell J, Monn JA, Schoepp DD. Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology (Berl) 2000; 148(4): 423–9

    Article  CAS  Google Scholar 

  29. Fell MJ, Johnson BG, Svensson KA, et al. Evidence for the role of mGlu2 not mGlu3 receptors in the pre-clinical antipsychotic pharmacology of the mGlu2/3 receptor agonist LY 404039. J Pharmacol Exp Ther 2008; 326(1): 209–17

    Article  PubMed  CAS  Google Scholar 

  30. Homayoun H, Jackson ME, Moghaddam B. Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol 2005; 93(4): 1989–2001

    Article  PubMed  CAS  Google Scholar 

  31. Clark M, Johnson BG, Wright RA, et al. Effects of the mGlu2/3 receptor agonist LY379268 on motor activity in phencyclidine-sensitized rats. Pharmacol Biochem Behav 2002; 73(2): 339–46

    Article  PubMed  CAS  Google Scholar 

  32. Harich S, Gross G, Bespalov A. Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology (Berl) 2007; 192(4): 511–9

    Article  CAS  Google Scholar 

  33. Schreiber R, Lowe D, Voerste A, et al. LY354740 affects startle responding but not sensorimotor gating or discriminative effects of phencyclidine. Eur J Pharmacol 2000; 388(2): R3–4

    Article  PubMed  CAS  Google Scholar 

  34. Olszewski RT, Wegorzewska MM, Monteiro AC, et al. Phencyclidine and dizocilpine induced behaviors reduced by N-acetylaspartylglutamate peptidase inhibition via metabotropic glutamate receptors. Biol Psychiatry 2008; 63(1): 86–91

    Article  PubMed  CAS  Google Scholar 

  35. Baker DA, Madayag A, Kristiansen LV, et al. Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology 2008; 33(7): 1760–72

    Article  PubMed  CAS  Google Scholar 

  36. Robbins MJ, Starr KR, Honey A, et al. Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res 2007; 1152: 215–27

    Article  PubMed  CAS  Google Scholar 

  37. Benneyworth MA, Xiang Z, Smith RL, et al. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharmacol 2007; 72(2): 477–84

    Article  PubMed  CAS  Google Scholar 

  38. Marek GJ, Wright RA, Schoepp DD, et al. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 2000; 292(1): 76–87

    PubMed  CAS  Google Scholar 

  39. Galici R, Echemendia NG, Rodriguez AL, et al. A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther 2005; 315(3): 1181–7

    Article  PubMed  CAS  Google Scholar 

  40. Kinney GG, O’Brien JA, Lemaire W, et al. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther 2005; 313(1): 199–206

    Article  PubMed  CAS  Google Scholar 

  41. Homayoun H, Moghaddam B. Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs. Proc Natl Acad Sci U S A 2008; 105(46): 18041–6

    Article  PubMed  CAS  Google Scholar 

  42. Cartmell J, Monn JA, Schoepp DD. The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. Eur J Pharmacol 2000; 400(2-3): 221–4

    Article  PubMed  CAS  Google Scholar 

  43. van Berckel BN, Kegeles LS, Waterhouse R, et al. Modulation of amphetamine-induced dopamine release by group II metabotropic glutamate receptor agonist LY354740 in non-human primates studied with positron emission tomography. Neuropsychopharmacology 2006; 31(5): 967–77

    Article  PubMed  CAS  Google Scholar 

  44. Homayoun H, Moghaddam B. Bursting of prefrontal cor-tex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: rate-dependent influence and interaction with NMDA receptors. Cereb Cortex 2006; 16(1): 93–105

    Article  PubMed  Google Scholar 

  45. Devon RS, Anderson S, Teague PW, et al. The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol Psychiatry 2001; 6(3): 311–4

    Article  PubMed  CAS  Google Scholar 

  46. Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/ Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999; 23(3): 583–92

    Article  PubMed  CAS  Google Scholar 

  47. Gauthier J, Champagne N, Lafreniere RG, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 2010; 107: 7863–8

    Article  PubMed  CAS  Google Scholar 

  48. Luccini E, Musante V, Neri E, et al. Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. Br J Pharmacol 2007; 151(7): 1087–94

    Article  PubMed  CAS  Google Scholar 

  49. Choe ES, Shin EH, Wang JQ. Regulation of phosphorylation of NMDA receptor NR1 subunits in the rat neostriatum by group I metabotropic glutamate receptors in vivo. Neurosci Lett 2006; 394(3): 246–51

    Article  PubMed  CAS  Google Scholar 

  50. Awad H, Hubert GW, Smith Y, et al. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000; 20(21): 7871–9

    PubMed  CAS  Google Scholar 

  51. Bruno V, Copani A, Knopfel T, et al. Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neurophar-macology 1995; 34(8): 1089–98

    Article  CAS  Google Scholar 

  52. Jia Z, Lu Y, Henderson J, et al. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR 5. Learn Mem 1998; 5(4-5): 331–43

    PubMed  CAS  Google Scholar 

  53. Pisani A, Gubellini P, Bonsi P, et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 2001; 106(3): 579–87

    Article  PubMed  CAS  Google Scholar 

  54. Alagarsamy S, Marino MJ, Rouse ST, et al. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 1999; 2(3): 234–40

    Article  PubMed  CAS  Google Scholar 

  55. Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 1999; 38(10): 1569–76

    Article  PubMed  CAS  Google Scholar 

  56. Pietraszek M, Nagel J, Gravius A, et al. The role of group I metabotropic glutamate receptors in schizophrenia. Amino Acids 2007; 32(2): 173–8

    Article  PubMed  CAS  Google Scholar 

  57. Pilowsky LS, Bressan RA, Stone JM, et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 2006; 11(2): 118–9

    Article  PubMed  CAS  Google Scholar 

  58. Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 2007; 78: 69–108

    Article  PubMed  CAS  Google Scholar 

  59. Kristiansen LV, Huerta I, Beneyto M, et al. NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007; 7(1): 48–55

    Article  PubMed  CAS  Google Scholar 

  60. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52(12): 998–1007

    Article  PubMed  CAS  Google Scholar 

  61. Koros E, Rosenbrock H, Birk G, et al. The selective mGlu5 receptor antagonist MTEP, similar to NMDA receptor antagonists, induces social isolation in rats. Neuropsychopharmacology 2007; 32(3): 562–76

    Article  PubMed  CAS  Google Scholar 

  62. Brody SA, Conquet F, Geyer MA. Effect of antipsychotic treatment on the prepulse inhibition deficit of mGluR5 knockout mice. Psychopharmacology (Berl) 2004; 172(2): 187–95

    Article  CAS  Google Scholar 

  63. Conn PJ, Lindsley CW, Jones CK. Activation of metabo-tropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 2009; 30(1): 25–31

    Article  PubMed  CAS  Google Scholar 

  64. Rodriguez AL, Williams R. Recent progress in the development of allosteric modulators of mGluR 5. Curr Opin Drug Discov Devel 2007; 10(6): 715–22

    PubMed  CAS  Google Scholar 

  65. Harrison PJ, Lyon L, Sartorius LJ, et al. The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol 2008; 22(3): 308–22

    Article  PubMed  CAS  Google Scholar 

  66. Joo A, Shibata H, Ninomiya H, et al. Structure and polymorphisms of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol Psychiatry 2001; 6(2): 186–92

    Article  PubMed  CAS  Google Scholar 

  67. Marti SB, Cichon S, Propping P, et al. Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Genet 2002; 114(1): 46–50

    Article  PubMed  Google Scholar 

  68. Fujii Y, Shibata H, Kikuta R, et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2003; 13(2): 71–6

    PubMed  Google Scholar 

  69. Egan MF, Straub RE, Goldberg TE, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A 2004; 101(34): 12604–9

    Article  PubMed  CAS  Google Scholar 

  70. Chen Q, He G, Chen Q, et al. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 2005; 73(1): 21–6

    Article  PubMed  Google Scholar 

  71. Norton N, Williams HJ, Dwyer S, et al. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry 2005; 5: 23

    Article  PubMed  CAS  Google Scholar 

  72. Tochigi M, Suga M, Ohashi J, et al. No association between the metabotropic glutamate receptor type 3 gene (GRM3) and schizophrenia in a Japanese population. Schizophr Res 2006; 88(1-3): 260–4

    Article  PubMed  Google Scholar 

  73. Albalushi T, Horiuchi Y, Ishiguro H, et al. Replication study and meta-analysis of the genetic association of GRM3 gene polymorphisms with schizophrenia in a large Japanese case-control population. Am J Med Genet B Neuropsychiatr Genet 2008; 147(3): 392–6

    PubMed  Google Scholar 

  74. Bishop JR, Wang K, Moline J, et al. Association analysis of the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2007; 17(6): 358

    Article  PubMed  Google Scholar 

  75. Schwab SG, Plummer C, Albus M, et al. DNA sequence variants in the metabotropic glutamate receptor 3 and risk to schizophrenia: an association study. Psychiatr Genet 2008; 18(1): 25–30

    Article  PubMed  Google Scholar 

  76. Ohtsuki T, Toru M, Arinami T. Mutation screening of the metabotropic glutamate receptor mGluR4 (GRM4) gene in patients with schizophrenia. Psychiatr Genet 2001; 11(2): 79–83

    Article  PubMed  CAS  Google Scholar 

  77. Bray NJ, Williams NM, Bowen T, et al. No evidence for association between a non-synonymous polymorphism in the gene encoding human metabotropic glutamate receptor 7 and schizophrenia. Psychiatr Genet 2000; 10(2): 83–6

    Article  PubMed  CAS  Google Scholar 

  78. Bolonna AA, Kerwin RW, Munro J, et al. Polymorphisms in the genes for mGluR types 7 and 8: association studies with schizophrenia. Schizophr Res 2001; 47(1): 99–103

    Article  PubMed  CAS  Google Scholar 

  79. Ohtsuki T, Koga M, Ishiguro H, et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr Res 2008; 101(1-3): 9–16

    Article  PubMed  Google Scholar 

  80. Takaki H, Kikuta R, Shibata H, et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 128(1): 6–14

    Article  Google Scholar 

  81. Marenco S, Steele SU, Egan MF, et al. Effect of metabotropic glutamate receptor 3 genotype on N-acetylas-partate measures in the dorsolateral prefrontal cortex. Am J Psychiatry 2006; 163(4): 740–2

    Article  PubMed  Google Scholar 

  82. Bishop JR, Ellingrod VL, Moline J, et al. Association between the polymorphic GRM3 gene and negative symptom improvement during olanzapine treatment. Schizophr Res 2005; 77(2-3): 253–60

    Article  PubMed  Google Scholar 

  83. Wroblewska B, Wroblewski JT, Pshenichkin S, et al. N-acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 1997; 69(1): 174–81

    Article  PubMed  CAS  Google Scholar 

  84. Bergeron R, Imamura Y, Frangioni JV, et al. Endogenous N-acetylaspartylglutamate reduced NMDA receptor-dependent current neurotransmission in the CA1 area of the hippocampus. J Neurochem 2007; 100(2): 346–57

    Article  PubMed  CAS  Google Scholar 

  85. Tsai G, Passani LA, Slusher BS, et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52(10): 829–36

    Article  PubMed  CAS  Google Scholar 

  86. Ghose S, Weickert CS, Colvin SM, et al. Glutamate car-boxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia. Neuropsycho-pharmacology 2004; 29(1): 117–25

    Article  CAS  Google Scholar 

  87. Krystal JH, D’Souza DC, Mathalon D, et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 2003; 169: 215–33

    Article  PubMed  CAS  Google Scholar 

  88. Patil ST, Zhang L, Martenyi F, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 2007; 13(9): 1102–7

    Article  PubMed  CAS  Google Scholar 

  89. Moghaddam B, Adams B, Verma A, et al. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17(8): 2921–7

    PubMed  CAS  Google Scholar 

  90. Dursun SM, Deakin JF. Augmenting antipsychotic treatment with lamotrigine or topiramate in patients with treatment-resistant schizophrenia: a naturalistic case-series outcome study. J Psychopharmacol 2001; 15(4): 297–301

    Article  PubMed  CAS  Google Scholar 

  91. Post RM. Comparative pharmacology of bipolar disorder and schizophrenia. Schizophr Res 1999; 39(2): 153–8; discussion 163

    Article  PubMed  CAS  Google Scholar 

  92. Tiihonen J, Halonen P, Wahlbeck K, et al. Topiramate add-on in treatment-resistant schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Psychiatry 2005; 66(8): 1012–5

    Article  PubMed  CAS  Google Scholar 

  93. Large CH, Webster EL, Goff DC. The potential role of lamotrigine in schizophrenia. Psychopharmacology (Berl) 2005; 181(3): 415–36

    Article  CAS  Google Scholar 

  94. Anand A, Charney DS, Cappiello A, et al. Lamotrigine attenuates ketamine effects in humans: support for hyperglutamatergic effects of NMDA antagonists. Arch Gen Psychiatry 2000; 57: 270–6

    Article  PubMed  CAS  Google Scholar 

  95. Gozzi A, Large CH, Schwarz A, et al. Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology 2008; 33(7): 1690–703

    Article  PubMed  CAS  Google Scholar 

  96. Brody SA, Geyer MA, Large CH. Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology (Berl) 2003; 169(3-4): 240–6

    Article  CAS  Google Scholar 

  97. Farber NB, Newcomer JW, Olney JW. Lamotrigine prevents NMDA antagonist neurotoxicity. Schizophr Res 1999; 36 (1-3): 308

    Google Scholar 

  98. Idris NF, Repeto P, Neill JC, et al. Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and D-amphetamine in the rat. Psychopharmacology (Berl) 2005; 179(2): 336–48

    Article  CAS  Google Scholar 

  99. Kremer I, Vass A, Gorelik I, et al. Placebo-controlled trial of lamotrigine added to conventional and atypical anti-psychotics in schizophrenia. Biol Psychiatry 2004; 56(6): 441–6

    Article  PubMed  CAS  Google Scholar 

  100. Tiihonen J, Hallikainen T, Ryynänen O-P, et al. Lamo-trigine in treatment-resistant schizophrenia: a randomized placebo-controlled crossover trial. Biol Psychiatry 2003; 54: 1–6

    Article  CAS  Google Scholar 

  101. Goff DC, Keefe R, Citrome L, et al. Lamotrigine as add-on therapy in schizophrenia: results of 2 placebo-controlled trials. J Clin Psychopharmacol 2007; 27(6): 582–9

    Article  PubMed  CAS  Google Scholar 

  102. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281: 1349–52

    Article  PubMed  CAS  Google Scholar 

  103. Swanson CJ, Schoepp DD. The group II metabotropic glutamate receptor agonist (−)-2-oxa-4-amino-bicyclo [3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. J Pharmacol Exp Ther 2002; 303(3): 919–27

    Article  PubMed  CAS  Google Scholar 

  104. Krystal JH, Abi-Saab W, Perry E, et al. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor (mGluR) agonist, LY354740, in healthy human subjects. Psychopharmacology 2005; 179(1): 303–9

    Article  PubMed  CAS  Google Scholar 

  105. Eli Lilly and Company. Lilly announces inconclusive phase II study results for mGlu2/3 at the International Congress on Schizophrenia Research [online]. Available from URL: http://newsroom.lilly.com/releasedetail.cfm?releaseid=373650 [Accessed 2010 May 19]

  106. Baker DA, Xi ZX, Shen H, et al. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22(20): 9134–41

    PubMed  CAS  Google Scholar 

  107. Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008; 64(5): 361–8

    Article  PubMed  CAS  Google Scholar 

  108. Lavoie S, Murray MM, Deppen P, et al. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 2008; 33(9): 2187–99

    Article  PubMed  CAS  Google Scholar 

  109. Olszewski RT, Bukhari N, Zhou J, et al. NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J Neurochem 2004; 89(4): 876–85

    Article  PubMed  CAS  Google Scholar 

  110. Kessler RC, McGonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comor-bidity Survey. Arch Gen Psychiatry 1994; 51(1): 8–19

    Article  PubMed  CAS  Google Scholar 

  111. Amiel JA, Mathew SJ. Glutamate and anxiety disorders. Curr Psychiatry Rep 2007; 9(4): 278–83

    Article  PubMed  Google Scholar 

  112. Mathew SJ, Price RB, Charney DS. Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet 2008; 14C: 89–98

    Google Scholar 

  113. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed, text revision. Washington, DC: American Psychiatric Association, 2000

    Google Scholar 

  114. Andrade L, Eaton WW, Chilcoat H. Lifetime comorbidity of panic attacks and major depression in a population-based study: symptom profiles. Br J Psychiatry 1994; 165(3): 363–9

    Article  PubMed  CAS  Google Scholar 

  115. Beekman AT, de Beurs E, van Balkom AJ, et al. Anxiety and depression in later life: co-occurrence and communality of risk factors. Am J Psychiatry 2000; 157(1): 89–95

    PubMed  CAS  Google Scholar 

  116. Judd LL, Kessler RC, Paulus MP, et al. Comorbidity as a fundamental feature of generalized anxiety disorders: results from the National Comorbidity Study (NCS). Acta Psychiatr Scand Suppl 1998; 393: 6–11

    Article  PubMed  CAS  Google Scholar 

  117. Glantz MD, Anthony JC, Berglund PA, et al. Mental disorders as risk factors for later substance dependence: estimates of optimal prevention and treatment benefits. Psychol Med 2009; 39(8): 1365–77

    Article  PubMed  CAS  Google Scholar 

  118. Robinson J, Sareen J, Cox BJ, et al. Self-medication of anxiety disorders with alcohol and drugs: results from a nationally representative sample. J Anxiety Disord 2009; 23(1): 38–45

    Article  PubMed  Google Scholar 

  119. Hasin DS, Stinson FS, Ogburn E, et al. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry 2007; 64(7): 830–42

    Article  PubMed  Google Scholar 

  120. Howland RH, Rush AJ, Wisniewski SR, et al. Concurrent anxiety and substance use disorders among outpatients with major depression: clinical features and effect on treatment outcome. Drug Alcohol Depend 2009; 99(1–3): 248–60

    Article  PubMed  Google Scholar 

  121. Fava M, Rush AJ, Alpert JE, et al. Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report. Am J Psychiatry 2008; 165(3): 342–51

    Article  PubMed  Google Scholar 

  122. Swanson CJ, Bures M, Johnson MP, et al. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005; 4(2): 131–44

    Article  PubMed  CAS  Google Scholar 

  123. Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 2002; 51(10): 775–87

    Article  PubMed  CAS  Google Scholar 

  124. Phan KL, Fitzgerald DA, Cortese BM, et al. Anterior cin-gulate neurochemistry in social anxiety disorder: 1H-MRS at 4 Tesla. Neuroreport 2005; 16(2): 183–6

    Article  PubMed  Google Scholar 

  125. Pollack MH, Jensen JE, Simon NM, et al. High-field MRS study of GABA, glutamate and glutamine in social anxiety disorder: response to treatment with levetiracetam. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3): 739–43

    Article  PubMed  CAS  Google Scholar 

  126. Pittenger C, Coric V, Banasr M, et al. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs 2008; 22(9): 761–86

    Article  PubMed  CAS  Google Scholar 

  127. Mathew SJ, Amiel JM, Coplan JD, et al. Open-label trial of riluzole in generalized anxiety disorder. Am J Psychiatry 2005; 162(12): 2379–81

    Article  PubMed  Google Scholar 

  128. Mathew SJ, Price RB, Mao X, et al. Hippocampal N-acetylaspartate concentration and response to riluzole in generalized anxiety disorder. Biol Psychiatry 2008; 63(9): 891–8

    Article  PubMed  CAS  Google Scholar 

  129. Van Ameringen M, Mancini C, Pipe B, et al. An open trial of topiramate in the treatment of generalized social phobia. J Clin Psychiatry 2004; 65(12): 1674–8

    Article  PubMed  Google Scholar 

  130. Tassone DM, Boyce E, Guyer J, et al. Pregabalin: a novel gamma-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clin Ther 2007; 29(1): 26–48

    Article  PubMed  CAS  Google Scholar 

  131. Krystal JH, Tolin DF, Sanacora G, et al. Neuroplasticity as a target for the pharmacotherapy of anxiety disorders, mood disorders, and schizophrenia. Drug Discov Today 2009; 14: 690–7

    Article  PubMed  CAS  Google Scholar 

  132. Davis M, Ressler K, Rothbaum BO, et al. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry 2006; 60: 369–75

    Article  PubMed  CAS  Google Scholar 

  133. Norberg MM, Krystal JH, Tolin DF, et al. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol Psychiatry 2008; 63: 1118–26

    Article  PubMed  CAS  Google Scholar 

  134. Ressler KJ, Rothbaum BO, Tannenbaum L, et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 2004; 61: 1136–44

    Article  PubMed  Google Scholar 

  135. Camodeca N, Breakwell NA, Rowan MJ, et al. Induction of LTD by activation of group I mGluR in the dentate gyrusin vitro. Neuropharmacology 1999; 38: 1597–606

    Article  PubMed  CAS  Google Scholar 

  136. Popkirov SG, Manahan-Vaughan D. Involvement of the metabotropic glutamate receptor mGluR5 in NMDA receptor-dependent, learning-facilitated long-term depression in CA1 synapses. Cereb Cortex. Epub 2010 Jun 4

  137. Sung KW, Choi S, Lovinger DM, et al. Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J Neurolphysiol 2001; 86: 2405–12

    CAS  Google Scholar 

  138. Ballard TM, Woolley ML, Prinssen E, et al. The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology (Berl) 2005; 179(1): 218–29

    Article  CAS  Google Scholar 

  139. Busse CS, Brodkin J, Tattersall D, et al. The behavioral profile of the potent and selective mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. Neuropsychopharmacology 2004; 29(11): 1971–9

    Article  PubMed  CAS  Google Scholar 

  140. Porter RH, Jaeschke G, Spooren W, et al. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 2005; 315(2): 711–21

    Article  PubMed  CAS  Google Scholar 

  141. Pecknold JC, McClure DJ, Appeltauer L, et al. Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J Clin Psychopharmacol 1982; 2(2): 129–33

    Article  PubMed  CAS  Google Scholar 

  142. Mitsukawa K, Mombereau C, Lotscher E, et al. Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders. Neuropsychopharmacology 2006; 31(6): 1112–22

    PubMed  CAS  Google Scholar 

  143. Fendt M, Schmid S, Thakker DR, et al. mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 2008; 13(10): 970–9

    Article  PubMed  CAS  Google Scholar 

  144. Schoepp DD, Wright RA, Levine LR, et al. LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 2003; 6(3): 189–97

    Article  PubMed  CAS  Google Scholar 

  145. Linden AM, Greene SJ, Bergeron M, et al. Anxiolytic activity of the MGLU2/3 receptor agonist LY354740 on the elevated plus maze is associated with the suppression of stress-induced c-Fos in the hippocampus and increases in c-Fos induction in several other stress-sensitive brain regions. Neuropsychopharmacology 2004; 29(3): 502–13

    Article  PubMed  CAS  Google Scholar 

  146. Nordquist RE, Steckler T, Wettstein JG, et al. Metabotropic glutamate receptor modulation, translational methods, and biomarkers: relationships with anxiety. Psychopharmacology (Berl) 2008; 199(3): 389–402

    Article  CAS  Google Scholar 

  147. Pietraszek M, Sukhanov I, Maciejak P, et al. Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur J Pharmacol 2005; 514(1): 25–34

    Article  PubMed  CAS  Google Scholar 

  148. Steckler T, Lavreysen H, Oliveira AM, et al. Effects of mGlu1 receptor blockade on anxiety-related behaviour in the rat lick suppression test. Psychopharmacology (Berl) 2005; 179(1): 198–206

    Article  CAS  Google Scholar 

  149. Rorick-Kehn LM, Hart JC, McKinzie DL. Pharmacological characterization of stress-induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands. Psychopharmacology (Berl) 2005; 183(2): 226–40

    Article  CAS  Google Scholar 

  150. Varty GB, Grilli M, Forlani A, et al. The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology (Berl) 2005; 179(1): 207–17

    Article  CAS  Google Scholar 

  151. Satow A, Maehara S, Ise S, et al. Pharmacological effects of the metabotropic glutamate receptor 1 antagonist compared with those of the metabotropic glutamate receptor 5 antagonist and metabotropic glutamate receptor 2/3 agonist in rodents: detailed investigations with a selective allosteric metabotropic glutamate receptor 1 antagonist, FTIDC [4-[1-(2-fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methy l-3,6-dihydropyridine-1(2H)-carboxamide]. J Pharmacol Exp Ther 2008; 326(2): 577–86

    Article  PubMed  CAS  Google Scholar 

  152. Klodzinska A, Tatarczynska E, Stachowicz K, et al. The anxiolytic-like activity of AIDA (1-aminoindan-1,5-dicarboxylic acid), an mGLu 1 receptor antagonist. J Physiol Pharmacol 2004; 55 (1 Pt 1): 113–26

    PubMed  CAS  Google Scholar 

  153. Lima VC, Molchanov ML, Aguiar DC, et al. Modulation of defensive responses and anxiety-like behaviors by group I metabotropic glutamate receptors located in the dorsolateral periaqueductal gray. Prog Neuropsycho-pharmacol Biol Psychiatry 2008; 32(1): 178–85

    CAS  Google Scholar 

  154. Brodkin J, Bradbury M, Busse C, et al. Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci 2002; 16(11): 2241–4

    Article  PubMed  CAS  Google Scholar 

  155. Klodzinska A, Tatarczynska E, Chojnacka-Wojcik E, et al. Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA(A) signaling. Neuropharmacology 2004; 47(3): 342–50

    Article  PubMed  CAS  Google Scholar 

  156. Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, et al. Estrus variation in anticonflict-like effects of the mGlu5 receptor antagonist MTEP, microinjected into lateral septal nuclei of female Wistar rats. Pharmacol Biochem Behav 2006; 84(3): 385–91

    Article  PubMed  CAS  Google Scholar 

  157. Nordquist RE, Durkin S, Jaeschke G, et al. Stress-induced hyperthermia: effects of acute and repeated dosing of MPEP. Eur J Pharmacol 2007; 568(1–3): 199–202

    Article  PubMed  CAS  Google Scholar 

  158. Spooren WP, Schoeffter P, Gasparini F, et al. Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur J Pharmacol 2002; 435 (2-3): 161–70

    Google Scholar 

  159. Spooren WP, Gasparini F, van der Putten H, et al. Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. Eur J Pharmacol 2000; 397(1): R1–2

    Article  PubMed  CAS  Google Scholar 

  160. Tatarczynska E, Klodzinska A, Kroczka B, et al. The antianxiety-like effects of antagonists of group I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacologia 2001; 158(1): 94–9

    Article  CAS  Google Scholar 

  161. Wieronska JM, Smialowska M, Branski P, et al. In the amygdala anxiolytic action of mGlu5 receptors antagonist MPEP involves neuropeptide Y but not GABAA signaling. Neuropsychopharmacology 2004; 29(3): 514–21

    Article  PubMed  CAS  Google Scholar 

  162. Perez de la Mora M, Lara-Garcia D, Jacobsen KX, et al. Anxiolytic-like effects of the selective metabotropic glutamate receptor 5 antagonist MPEP after its intra-amygdaloid microinjection in three different non-conditioned rat models of anxiety. Eur J Neurosci 2006; 23(10): 2749–59

    Article  PubMed  Google Scholar 

  163. Schulz B, Fendt M, Gasparini F, et al. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 2001; 41(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  164. Iijima M, Chaki S. Separation-induced ultrasonic vocalization in rat pups: further pharmacological characterization. Pharmacol Biochem Behav 2005; 82(4): 652–7

    Article  PubMed  CAS  Google Scholar 

  165. Rorick-Kehn LM, Perkins EJ, Knitowski KM, et al. Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY 544344. J Pharmacol Exp Ther 2006; 316(2): 905–13

    Article  PubMed  CAS  Google Scholar 

  166. Helton DR, Tizzano JP, Monn JA, et al. Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 1998; 284(2): 651–60

    PubMed  CAS  Google Scholar 

  167. Walker DL, Rattiner LM, Davis M. Group II metabotropic glutamate receptors within the amygdala regulate fear as assessed with potentiated startle in rats. Behav Neurosci 2002; 116(6): 1075–83

    Article  PubMed  CAS  Google Scholar 

  168. Tizzano JP, Griffey KI, Schoepp DD. The anxiolytic action of mGlu2/3 receptor agonist, LY354740, in the fear-potentiated startle model in rats is mechanistically distinct from diazepam. Pharmacol Biochem Behav 2002; 73(2): 367–74

    Article  PubMed  CAS  Google Scholar 

  169. Linden AM, Shannon H, Baez M, et al. Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psycho-pharmacology (Berl) 2005; 179(1): 284–91

    Article  CAS  Google Scholar 

  170. Monn JA, Valli MJ, Massey SM, et al. Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. J Med Chem 1997; 40(4): 528–37

    Article  PubMed  CAS  Google Scholar 

  171. Klodzinska A, Chojnacka-Wojcik E, Palucha A, et al. Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 1999; 38(12): 1831–9

    Article  PubMed  CAS  Google Scholar 

  172. Benvenga MJ, Overshiner CD, Monn JA, et al. Dis-inhibitory effects of LY354740, a new mGluR2 agonist, on behaviors suppressed by electric shock in rats and pigeons. Drug Devel Res 1999; 47(1): 37–44

    Article  CAS  Google Scholar 

  173. Shekhar A, Keim SR. LY354740, a potent group II metabotropic glutamate receptor agonist prevents lactate-induced panic-like response in panic-prone rats. Neuropharmacology 2000; 39(7): 1139–46

    Article  PubMed  CAS  Google Scholar 

  174. Johnson MP, Baez M, Jagdmann Jr GE, et al. Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy) phenyl)-N-(2,2,2-trifluoroethylsulfonyl) pyrid-3-ylmethylamine. J Med Chem 2003; 46(15): 3189–92

    Article  PubMed  CAS  Google Scholar 

  175. Johnson MP, Barda D, Britton TC, et al. Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psycho-pharmacology (Berl) 2005; 179(1): 271–83

    Article  CAS  Google Scholar 

  176. Bueno AB, Collado I, de Dios A, et al. Dipeptides as effective prodrugs of the unnatural amino acid (+)-2-amino-bicyclo [3.1.0]hexane-2,6-dicarboxylic acid (LY354740), a selective group II metabotropic glutamate receptor agonist. J Med Chem 2005; 48(16): 5305–20

    Article  PubMed  CAS  Google Scholar 

  177. Lin CH, Lee CC, Huang YC, et al. Activation of group II metabotropic glutamate receptors induces depotentiation in amygdala slices and reduces fear-potentiated startle in rats. Learn Mem 2005; 12(2): 130–7

    Article  PubMed  Google Scholar 

  178. Iijima M, Shimazaki T, Ito A, et al. Effects of metabotropic glutamate 2/3 receptor antagonists in the stress-induced hyperthermia test in singly housed mice. Psychopharmacology (Berl) 2007; 190(2): 233–9

    Article  CAS  Google Scholar 

  179. Bespalov AY, van Gaalen MM, Sukhotina IA, et al. Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. Eur J Pharmacol 2008; 592(1-3): 96–102

    Article  PubMed  CAS  Google Scholar 

  180. Shimazaki T, Iijima M, Chaki S. Anxiolytic-like activity of MGS0039, a potent group II metabotropic glutamate receptor antagonist, in a marble-burying behavior test. Eur J Pharmacol 2004; 501(1-3): 121–5

    Article  PubMed  CAS  Google Scholar 

  181. Yoshimizu T, Shimazaki T, Ito A, et al. An mGluR2/3 antagonist, MGS0039, exerts antidepressant and anxiolytic effects in behavioral models in rats. Psychopharmacology (Berl) 2006; 186(4): 587–93

    Article  CAS  Google Scholar 

  182. Chaki S, Yoshikawa R, Hirota S, et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuro-pharmacology 2004; 46(4): 457–67

    CAS  Google Scholar 

  183. Stachowicz K, Klak K, Klodzinska A, et al. Anxiolytic-like effects of PHCCC, an allosteric modulator of mGlu4 receptors, in rats. Eur J Pharmacol 2004; 498(1-3): 153–6

    Article  PubMed  CAS  Google Scholar 

  184. Stachowicz K, Chojnacka-Wojcik E, Klak K, et al. Anxiolytic-like effects of group III mGlu receptor ligands in the hippocampus involve GABAA signaling. Pharmacol Rep 2006; 58(6): 820–6

    PubMed  CAS  Google Scholar 

  185. Palucha A, Tatarczynska E, Branski P, et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004; 46(2): 151–9

    Article  PubMed  CAS  Google Scholar 

  186. Stachowicz K, Chojnacka-Wojcik E, Klak K, et al. Anxiolytic-like effect of group III mGlu receptor antagonist is serotonin-dependent. Neuropharmacology 2007; 52(2): 306–12

    Article  PubMed  CAS  Google Scholar 

  187. Stachowicz K, Klak K, Pilc A, et al. Lack of the anti-anxiety-like effect of (S)-3,4-DCPG, an mGlu8 receptor agonist, after central administration in rats. Pharmacol Rep 2005; 57(6): 856–60

    PubMed  CAS  Google Scholar 

  188. Belozertseva IV, Kos T, Popik P, et al. Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol 2007; 17(3): 172–9

    Article  PubMed  CAS  Google Scholar 

  189. Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, et al. Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 380–6

    Article  PubMed  CAS  Google Scholar 

  190. Smolders I, Clinckers R, Meurs A, et al. Direct enhancement of hippocampal dopamine or serotonin levels as a pharmacodynamic measure of combined antidepressant-anticonvulsant action. Neuropharmacology 2008; 54(6): 1017–28

    Article  PubMed  CAS  Google Scholar 

  191. Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, et al. Antidepressant-like and anxiolytic-like actions of the mGlu5 receptor antagonist MTEP, microinjected into lateral septal nuclei of male Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(6): 1129–35

    Article  PubMed  CAS  Google Scholar 

  192. Li X, Need AB, Baez M, et al. Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice. J Pharmacol Exp Ther 2006; 319(1): 254–9

    Article  PubMed  CAS  Google Scholar 

  193. Palucha A, Branski P, Szewczyk B, et al. Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav 2005; 81(4): 901–6

    Article  PubMed  CAS  Google Scholar 

  194. Klak K, Palucha A, Branski P, et al. Combined adminis-tration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids 2007; 32(2): 169–72

    Article  PubMed  CAS  Google Scholar 

  195. Coplan JD, Mathew SJ, Smith EL, et al. Effects of LY354740, a novel glutamatergic metabotropic agonist, on nonhuman primate hypothalamic-pituitary-adrenal axis and noradrenergic function. CNS Spectr 2001; 6(7): 607–12, 617

    PubMed  CAS  Google Scholar 

  196. Grillon C, Cordova J, Levine LR, et al. Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl) 2003; 168(4): 446–54

    Article  CAS  Google Scholar 

  197. Bergink V, Westenberg HG. Metabotropic glutamate II receptor agonists in panic disorder: a double blind clinical trial with LY 354740. Int Clin Psychopharmacol 2005; 20(6): 291–3

    Article  PubMed  Google Scholar 

  198. Michelson D, Levine LR, Dellva MA, et al. Clinical studies with mGlu2/3 receptor agonists: LY354740 compared with placebo in patients with generalized anxiety disorder. Neuropharmacology 2005; 49(S1): 84–257

    Google Scholar 

  199. Dunayevich E, Erickson J, Levine L, et al. Efficacy and tolerability of an mGlu2/3 agonist in the treatment of generalized anxiety disorder. Neuropsychopharmacology 2008; 33(7): 1603–10

    Article  PubMed  CAS  Google Scholar 

  200. Rorick-Kehn LM, Johnson BG, Burkey JL, et al. Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (−)-(1R,4S,5S,6S) -4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4, 6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 2007; 321(1): 308–17

    Article  PubMed  CAS  Google Scholar 

  201. Kellner M, Muhtz C, Stark K, et al. Effects of a metabotropic glutamate(2/3) receptor agonist (LY544344/ LY354740) on panic anxiety induced by cholecystokinin tetrapeptide in healthy humans: preliminary results. Psychopharmacology (Berl) 2005; 179(1): 310–5

    Article  CAS  Google Scholar 

  202. Conn PJ, Roth BL. Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology 2008; 33(9): 2048–60

    Article  PubMed  CAS  Google Scholar 

  203. Berman RM, Krystal JH, Charney DS. Mechanism of action of antidepressants: monoamine hypotheses and beyond. In: Watson SJ, editor. Biology of schizophrenia and affective disorders. Washington, DC: American Psychiatric Press, 1996: 295–368

    Google Scholar 

  204. Pilc A, Chaki S, Nowak G, et al. Mood disorders: regulation by metabotropic glutamate receptors. Biochem Pharmacol 2008; 75(5): 997–1006

    Article  PubMed  CAS  Google Scholar 

  205. Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligo-dendrocytes. Biol Psychiatry 2004; 55(6): 563–9

    Article  PubMed  Google Scholar 

  206. Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95(22): 13290–5

    Article  PubMed  CAS  Google Scholar 

  207. Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61: 705–13

    Article  PubMed  CAS  Google Scholar 

  208. Hasler G, Neumeister A, van der Veen JW, et al. Normal prefrontal gamma-aminobutyric acid levels in remitted depressed subjects determined by proton magnetic resonance spectroscopy. Biol Psychiatry 2005; 58(12): 969–73

    Article  PubMed  CAS  Google Scholar 

  209. Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64(2): 193–200

    Article  PubMed  CAS  Google Scholar 

  210. Mason G, Haga K, Appel M, et al. Measuring cortical GABA levels and neurotransmitter turnover with 1H-MRS and 13C-MRS. Biol Psychiatry 2001; 49: 148S

    Google Scholar 

  211. Krystal JH, Sanacora G, Goddard A, et al. GABA levels and the function of glutamic acid decarboxylase in depression and panic disorder: insights from MRS. Int J Neuropsychopharmacology 2008; 11 Suppl. 1: 73

    Google Scholar 

  212. Pittenger C, Sanacora G, Krystal JH. The NMDA receptor as a therapeutic target for major depressive disorder. CNS Neurol Disord Drug Targets 2007; 6(2): 101–15

    Article  PubMed  CAS  Google Scholar 

  213. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47(4): 351–4

    Article  PubMed  CAS  Google Scholar 

  214. Zarate Jr CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63(8): 856–64

    Article  PubMed  CAS  Google Scholar 

  215. Krystal JH. Ketamine and the potential role for rapid-acting antidepressant medications. Swiss Med Wkly 2007; 137(15-16): 215–6

    PubMed  Google Scholar 

  216. Maeng S, Zarate Jr CA, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63(4): 349–52

    Article  PubMed  CAS  Google Scholar 

  217. Paterson NE, Markou A. Animal models and treatments for addiction and depression co-morbidity. Neurotox Res 2007; 11(1): 1–32

    Article  PubMed  CAS  Google Scholar 

  218. Witkin JM, Marek GJ, Johnson BG, et al. Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007; 6(2): 87–100

    Article  PubMed  CAS  Google Scholar 

  219. Palucha A, Pilc A. On the role of metabotropic glutamate receptors in the mechanisms of action of antidepressants. Pol J Pharmacol 2002; 54(6): 581–6

    PubMed  CAS  Google Scholar 

  220. D’Ascenzo M, Fellin T, Terunuma M, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 2007; 104(6): 1995–2000

    Article  PubMed  CAS  Google Scholar 

  221. Legutko B, Szewczyk B, Pomierny-Chamiolo L, et al. Effect of MPEP treatment on brain-derived neurotrophic factor gene expression. Pharmacol Rep 2006 May–Jun; 58(3): 427–30

    PubMed  CAS  Google Scholar 

  222. Krystal JH. Capitalizing on extrasynaptic glutamate neurotransmission to treat antipsychotic-resistant symptoms in schizophrenia. Biol Psychiatry 2008; 64(5): 358–60

    Article  PubMed  Google Scholar 

  223. Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder: a double-blind randomized placebo-controlled trial. Biol Psychiatry 2008; 64(6): 468–75

    Article  PubMed  CAS  Google Scholar 

  224. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5(5): 405–14

    PubMed  CAS  Google Scholar 

  225. Karasawa J, Shimazaki T, Kawashima N, et al. AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain Res 2005; 1042(1): 92–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was generously supported by Department of Veterans Affairs (via support for the Alcohol Research Center, Merit Review Grant, National Center for PTSD), the National Institute on Alcohol Abuse and Alcoholism (RO1 AA-11321, K05 AA-14906-01, I-P50 AA-12870), the National Institute of Mental Health (MH P50 MH44866, P50 MH068789, K23-MH-069656), NARSAD and the Yale Center for Clinical Investigation (CTSA).

During 2007–9, Dr Krystal has served as a scientific consultant to the following companies: AstraZeneca Pharmaceuticals, Cypress Bioscience, Forest Laboratories, GlaxoSmithKline, Lohocla Research Corporation, HoustonPharma, Eli Lilly and Company, Pfizer Pharmaceuticals, Schering-Plough Research Institute, SK Life Sciences, Takeda Industries and Transcept Pharmaceuticals. He holds less than $US10 000 in exercisable warrant options with Transcept Pharmaceuticals. He is the principal investigator of a multicentre study in which Janssen Research Foundation has provided drug and some support to the Department of Veterans Affairs. He is a co-sponsor for two patents under review for glutamatergic agents targeting the treatment of depression. Dr Mathew has received grant/research support from Alexza Pharmaceuticals, GlaxoSmithKline, Novartis, National Alliance for Research on Schizophrenia and Depression and Roche Pharmaceuticals, and has received consulting or lecture fees from AstraZeneca Pharmaceuticals and Jazz Pharmaceuticals. Drs Charney and Mathew and Mount Sinai School of Medicine have been named as inventors on a use-patent for ketamine for the treatment of depression. If ketamine were shown to be effective in the treatment of depression and received approval from the US FDA for this indication, Dr Charney and Mount Sinai School of Medicine could benefit financially. Dr Mathew has relinquished his claim to any royalties and will not benefit financially if ketamine is approved for this use. Dr Mathew is currently employed at the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA. Drs D’Souza, Garakani and Gunduz-Bruce have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Krystal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krystal, J.H., Mathew, S.J., D’Souza, D.C. et al. Potential Psychiatric Applications of Metabotropic Glutamate Receptor Agonists and Antagonists. CNS Drugs 24, 669–693 (2010). https://doi.org/10.2165/11533230-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11533230-000000000-00000

Keywords

Navigation