Stem and progenitor cell-based therapy of the human central nervous system

Nat Biotechnol. 2005 Jul;23(7):862-71. doi: 10.1038/nbt1119.

Abstract

Multipotent neural stem cells, capable of giving rise to both neurons and glia, line the cerebral ventricles of all adult animals, including humans. In addition, distinct populations of nominally glial progenitor cells, which also have the capacity to generate several cell types, are dispersed throughout the subcortical white matter and cortex. A number of approaches have evolved for using neural progenitor cells in cell therapy. Four strategies are especially attractive for clinical translation: first, transplantation of oligodendrocyte progenitor cells as a means of treating the disorders of myelin; second, transplantation of phenotypically restricted neuronal progenitor cells to treat diseases of discrete loss of a single neuronal phenotype, such as Parkinson disease; third, implantation of mixed progenitor pools to treat diseases characterized by the loss of several discrete phenotypes, such as spinal cord injury; and fourth, mobilization of endogenous neural progenitor cells to restore neurons lost as a result of neurodegenerative diseases, in particular Huntington disease. Together, these may present the most compelling strategies and near-term disease targets for cell-based neurological therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Central Nervous System Diseases / therapy*
  • Humans
  • Neurons / physiology*
  • Regeneration*
  • Stem Cell Transplantation*
  • Stem Cells / physiology*