Heterotrimeric G-proteins: a short history

Br J Pharmacol. 2006 Jan;147 Suppl 1(Suppl 1):S46-55. doi: 10.1038/sj.bjp.0706405.

Abstract

Some 865 genes in man encode G-protein-coupled receptors (GPCRs). The heterotrimeric guanine nucleotide-binding proteins (G-proteins) function to transduce signals from this vast panoply of receptors to effector systems including ion channels and enzymes that alter the rate of production, release or degradation of intracellular second messengers. However, it was not until the 1970s that the existence of such transducing proteins was even seriously suggested. Combinations of bacterial toxins that mediate their effects via covalent modification of the alpha-subunit of certain G-proteins and mutant cell lines that fail to generate cyclic AMP in response to agonists because they either fail to express or express a malfunctional G-protein allowed their identification and purification. Subsequent to initial cloning efforts, cloning by homology has defined the human G-proteins to derive from 35 genes, 16 encoding alpha-subunits, five beta and 14 gamma. All function as guanine nucleotide exchange on-off switches and are mechanistically similar to other proteins that are enzymic GTPases. Although not readily accepted initially, it is now well established that beta/gamma complexes mediate as least as many functions as the alpha-subunits. The generation of chimeras between different alpha-subunits defined the role of different sections of the primary/secondary sequence and crystal structures and cocrystals with interacting proteins have given detailed understanding of their molecular structure and basis of function. Finally, further modifications of such chimeras have generated a range of G-protein alpha-subunits with greater promiscuity to interact across GPCR classes and initiated the use of such modified G-proteins in drug discovery programmes.

Publication types

  • Historical Article
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Membrane / metabolism
  • GTP-Binding Protein alpha Subunits / chemistry
  • GTP-Binding Protein alpha Subunits / genetics
  • GTP-Binding Protein alpha Subunits / physiology
  • GTP-Binding Protein beta Subunits / chemistry
  • GTP-Binding Protein beta Subunits / genetics
  • GTP-Binding Protein beta Subunits / physiology
  • GTP-Binding Protein gamma Subunits / chemistry
  • GTP-Binding Protein gamma Subunits / genetics
  • GTP-Binding Protein gamma Subunits / physiology
  • Heterotrimeric GTP-Binding Proteins* / chemistry
  • Heterotrimeric GTP-Binding Proteins* / genetics
  • Heterotrimeric GTP-Binding Proteins* / physiology
  • History, 20th Century
  • History, 21st Century
  • Humans
  • Molecular Sequence Data
  • Protein Conformation
  • Protein Processing, Post-Translational

Substances

  • GTP-Binding Protein alpha Subunits
  • GTP-Binding Protein beta Subunits
  • GTP-Binding Protein gamma Subunits
  • Heterotrimeric GTP-Binding Proteins