Comparison of TRPA1-versus TRPV1-mediated cough in guinea pigs

Eur J Pharmacol. 2012 Aug 15;689(1-3):211-8. doi: 10.1016/j.ejphar.2012.05.048. Epub 2012 Jun 7.

Abstract

TRPA1 receptor is activated by endogenous inflammatory mediators and exogenous pollutant molecules relevant to respiratory diseases. Previous studies have implicated TRPA1 as a drug target for antitussive therapy. Here we evaluated the relative efficacy of TRPA1 activation to evoke cough. In conscious guinea pigs the TRPA1 agonist allyl-isothiocyanate (AITC) evoked cough with a maximally effective concentration of 10mM that was abolished by the selective TRPA1 antagonist AP-18. AITC (10mM) was approximately 3-times less effective in inducing cough than capsaicin (50 μM). Ex vivo single fiber extracellular recordings revealed that, similarly to capsaicin, AITC evoked activation in airway jugular C-fibers, but not in airway nodose Aδ-fibers. Consistent with the cough studies, AITC was approximately 3-times less effective than capsaicin in evoking sustained activation of the jugular C-fibers. Another TRPA1 agonist, cinnamaldehyde, was approximately twofold more effective than AITC in inducing cough. However, the cinnamaldehyde (10mM)-induced cough was only partially inhibited by the TRPA1 antagonist AP-18, and was abolished by combination of AP-18 and the TRPV1 antagonist I-RTX. We conclude that in naïve guinea pigs, TRPA1 activation initiates cough that is relatively modest compared to the cough initiated by TRPV1, likely due to lower efficacy of TRPA1 stimulation to induce sustained activation of airway C-fibers.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrolein / analogs & derivatives
  • Acrolein / toxicity
  • Animals
  • Antitussive Agents / pharmacology
  • Antitussive Agents / therapeutic use
  • Cough / chemically induced*
  • Cough / physiopathology*
  • Guinea Pigs
  • Male
  • Nerve Fibers, Unmyelinated / drug effects
  • Nerve Fibers, Unmyelinated / pathology
  • TRPA1 Cation Channel
  • TRPV Cation Channels / agonists
  • TRPV Cation Channels / antagonists & inhibitors
  • TRPV Cation Channels / physiology*
  • Transient Receptor Potential Channels / agonists
  • Transient Receptor Potential Channels / antagonists & inhibitors
  • Transient Receptor Potential Channels / physiology*

Substances

  • Antitussive Agents
  • TRPA1 Cation Channel
  • TRPV Cation Channels
  • TRPV1 protein, mouse
  • Transient Receptor Potential Channels
  • Trpa1 protein, mouse
  • Acrolein
  • cinnamaldehyde