Potent and specific inhibition of human leukocyte elastase, cathepsin G and proteinase 3 by sulfone derivatives employing the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold

Bioorg Med Chem. 1998 Jun;6(6):661-71. doi: 10.1016/s0968-0896(98)00006-6.

Abstract

This paper describes the results of structure-activity relationship studies in a series of heterocyclic mechanism-based inhibitors based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold I and capable of interacting with the Sn and Sn' subsites of a serine proteinase. Sulfone derivatives of I were found to be highly effective, time-dependent inhibitors of human leukocyte elastase (HLE), cathepsin G (Cat G) and proteinase 3 (PR 3). The judicious selection of an R1 group (accommodated at the primary specificity site S1) that is based on the known substrate specificity of a target serine proteinase, was found to yield highly selective inhibitors. The presence of a benzyl group (R2 = benzyl) at the S2 subsite was found to lead to a pronounced enhancement in inhibitory potency. Furthermore, the effective use of computer graphics and modeling has led to the design of potent, water-soluble inhibitors. The results of these studies demonstrate that the 1,2,5-thiadiazolidin-3-one 1,1, dioxide platform provides an effective means for appending recognition elements in a well-defined vector relationship, and in fashioning highly-selective and potent inhibitors of serine proteinases.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cathepsin G
  • Cathepsins / antagonists & inhibitors*
  • Humans
  • Kinetics
  • Leukocyte Elastase / antagonists & inhibitors*
  • Models, Molecular
  • Myeloblastin
  • Serine Endopeptidases / metabolism*
  • Serine Proteinase Inhibitors / chemical synthesis
  • Serine Proteinase Inhibitors / chemistry
  • Serine Proteinase Inhibitors / pharmacology*
  • Structure-Activity Relationship
  • Thiadiazoles / chemical synthesis
  • Thiadiazoles / chemistry
  • Thiadiazoles / pharmacology*

Substances

  • Serine Proteinase Inhibitors
  • Thiadiazoles
  • Cathepsins
  • Serine Endopeptidases
  • CTSG protein, human
  • Cathepsin G
  • Leukocyte Elastase
  • Myeloblastin