HNF-1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF.

  1. S Baumhueter,
  2. D B Mendel,
  3. P B Conley,
  4. C J Kuo,
  5. C Turk,
  6. M K Graves,
  7. C A Edwards,
  8. G Courtois, and
  9. G R Crabtree
  1. Howard Hughes Medical Institute, Stanford University, California 94305-5428.

Abstract

The coordinate expression of genes during development and differentiation is thought to be accomplished by common transcription factors operating on the promoters of families of coexpressed genes. HNF-1 is a transcriptional factor involved in the expression of genes in the liver and was originally defined as playing a major role in coordinating the expression of the linked fibrinogen genes. We have isolated cDNA clones for HNF-1 using oligonucleotides prepared to the sequence of the purified protein. The sequence of HNF-1 shares homeo domain, as well as short acidic and basic sequences with the POU family of transcriptional activators. Peptides from the protein interacting with the albumin proximal element, or B box (APF), and the factor interacting with the alpha 1-antitrypsin promoter (LF-B1) are found in the predicted sequence of HNF-1. HNF-1 mRNA is not present in the dedifferentiated hepatoma variant, C2, but reappears upon selection for gluconeogenesis coincident with the re-expression of liver-specific genes. Finally, the mRNA is not present in somatic cell hybrids in which liver-specific gene expression is extinguished. In contrast to earlier published results, we find that in addition to being present in the liver, HNF is expressed in the kidney, intestine, and spleen, but not in other tissues. This pattern of expression mirrors the complex pattern of expression of many genes, such as alpha-fetoprotein, alpha 1-antitrypsin, and fibrinogen, whose promoters contain HNF-1 sites. These data indicate that HNF-1 is a more broadly acting transcription factor than has been indicated by previous work.

Footnotes

| Table of Contents

Life Science Alliance