Abstract
The importance of membrane transporters for drug pharmacokinetics has been increasingly recognized during the last decade. Organic anion transporting polypeptide 1B1 (OATP1B1) is a genetically polymorphic influx transporter expressed on the sinusoidal membrane of human hepatocytes, and it mediates the hepatic uptake of many endogenous compounds and xenobiotics. Recent studies have demonstrated that OATP1B1 plays a major, clinically important role in the hepatic uptake of many drugs. A common single-nucleotide variation (coding DNA c.521T>C, protein p.V174A, rs4149056) in the SLCO1B1 gene encoding OATP1B1 decreases the transporting activity of OATP1B1, resulting in markedly increased plasma concentrations of, for example, many statins, particularly of active simvastatin acid. The variant thereby enhances the risk of statin-induced myopathy and decreases the therapeutic indexes of statins. However, the effect of the SLCO1B1 c.521T>C variant is different on different statins. The same variant also markedly affects the pharmacokinetics of several other drugs. Furthermore, certain SLCO1B1 variants associated with an enhanced clearance of methotrexate increase the risk of gastrointestinal toxicity by methotrexate in the treatment of children with acute lymphoblastic leukemia. Certain drugs (e.g., cyclosporine) potently inhibit OATP1B1, causing clinically significant drug interactions. Thus, OATP1B1 plays a major role in the hepatic uptake of drugs, and genetic variants and drug interactions affecting OATP1B1 activity are important determinants of individual drug responses. In this article, we review the current knowledge about the expression, function, substrate characteristics, and pharmacogenetics of OATP1B1 as well as its role in drug interactions, in parts comparing with those of other hepatocyte-expressed organic anion transporting polypeptides, OATP1B3 and OATP2B1.
Footnotes
This article is available online at http://pharmrev.aspetjournals.org.
doi:10.1124/pr.110.002857.
- © 2011 by The American Society for Pharmacology and Experimental Therapeutics
PharmRev articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|